找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing – IJCNLP 2004; First International Keh-Yih Su,Jun’ichi Tsujii,Oi Yee Kwong Conference proceedings 2005 Springe

[復(fù)制鏈接]
樓主: exposulate
21#
發(fā)表于 2025-3-25 05:50:43 | 只看該作者
Combining Labeled and Unlabeled Data for Learning Cross-Document Structural Relationshipsucture Theory (CST), this paper describes an empirical study that classifies CST relationships between sentence pairs extracted from topically related documents, exploiting both labeled and unlabeled data. We investigate a binary classifier for determining existence of structural relationships and a
22#
發(fā)表于 2025-3-25 11:07:16 | 只看該作者
Parsing Mixed Constructions in a Type Feature Structure Grammars computational analyses. Various theoretical approaches have been proposed to solve this puzzle, but they all have ended up abandoning or modifying fundamental theory-neutral desiderata such as endocentricity (every phrase has a head), lexicalism (no syntactic rule refers to the word-internal struc
23#
發(fā)表于 2025-3-25 12:16:29 | 只看該作者
Iterative CKY Parsing for Probabilistic Context-Free Grammarsedges produced during parsing, which results in more efficient parsing. Since pruning is done by using the edge’s inside Viterbi probability and the upper-bound of the outside Viterbi probability, this algorithm guarantees to output the exact Viterbi parse, unlike beam-search or best-first strategie
24#
發(fā)表于 2025-3-25 17:13:56 | 只看該作者
Causal Relation Extraction Using Cue Phrase and Lexical Pair Probabilitiesmade use of causal patterns such as causal verbs. We concentrate on the information obtained from other causal event pairs. If two event pairs share some lexical pairs and one of them is revealed to be causally related, the causal probability of another event pair tends to increase. We introduce the
25#
發(fā)表于 2025-3-25 21:27:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:28 | 只看該作者
27#
發(fā)表于 2025-3-26 06:10:35 | 只看該作者
Chinese Named Entity Recognition Based on Multilevel Linguistic Featureshe advantages of character-based and word-based models. From experiments on a large-scale corpus, we show that significant performance enhancements can be obtained by integrating various linguistic information (such as Chinese word segmentation, semantic types, part of speech, and named entity trigg
28#
發(fā)表于 2025-3-26 11:43:06 | 只看該作者
29#
發(fā)表于 2025-3-26 12:49:43 | 只看該作者
30#
發(fā)表于 2025-3-26 19:32:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临海市| 中阳县| 灌云县| 华容县| 吉木乃县| 景泰县| 玛纳斯县| 大石桥市| 嘉义县| 邵阳市| 富源县| 扎鲁特旗| 弋阳县| 西乡县| 理塘县| 泰州市| 察哈| 绵竹市| 临沭县| 出国| 焦作市| 阿尔山市| 丰原市| 建瓯市| 宜君县| 浮梁县| 贵阳市| 建瓯市| 东乡县| 华容县| 三门峡市| 兴和县| 随州市| 呼和浩特市| 郧西县| 攀枝花市| 威信县| 房山区| 新晃| 房产| 通州区|