找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing – IJCNLP 2004; First International Keh-Yih Su,Jun’ichi Tsujii,Oi Yee Kwong Conference proceedings 2005 Springe

[復(fù)制鏈接]
樓主: exposulate
21#
發(fā)表于 2025-3-25 05:50:43 | 只看該作者
Combining Labeled and Unlabeled Data for Learning Cross-Document Structural Relationshipsucture Theory (CST), this paper describes an empirical study that classifies CST relationships between sentence pairs extracted from topically related documents, exploiting both labeled and unlabeled data. We investigate a binary classifier for determining existence of structural relationships and a
22#
發(fā)表于 2025-3-25 11:07:16 | 只看該作者
Parsing Mixed Constructions in a Type Feature Structure Grammars computational analyses. Various theoretical approaches have been proposed to solve this puzzle, but they all have ended up abandoning or modifying fundamental theory-neutral desiderata such as endocentricity (every phrase has a head), lexicalism (no syntactic rule refers to the word-internal struc
23#
發(fā)表于 2025-3-25 12:16:29 | 只看該作者
Iterative CKY Parsing for Probabilistic Context-Free Grammarsedges produced during parsing, which results in more efficient parsing. Since pruning is done by using the edge’s inside Viterbi probability and the upper-bound of the outside Viterbi probability, this algorithm guarantees to output the exact Viterbi parse, unlike beam-search or best-first strategie
24#
發(fā)表于 2025-3-25 17:13:56 | 只看該作者
Causal Relation Extraction Using Cue Phrase and Lexical Pair Probabilitiesmade use of causal patterns such as causal verbs. We concentrate on the information obtained from other causal event pairs. If two event pairs share some lexical pairs and one of them is revealed to be causally related, the causal probability of another event pair tends to increase. We introduce the
25#
發(fā)表于 2025-3-25 21:27:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:28 | 只看該作者
27#
發(fā)表于 2025-3-26 06:10:35 | 只看該作者
Chinese Named Entity Recognition Based on Multilevel Linguistic Featureshe advantages of character-based and word-based models. From experiments on a large-scale corpus, we show that significant performance enhancements can be obtained by integrating various linguistic information (such as Chinese word segmentation, semantic types, part of speech, and named entity trigg
28#
發(fā)表于 2025-3-26 11:43:06 | 只看該作者
29#
發(fā)表于 2025-3-26 12:49:43 | 只看該作者
30#
發(fā)表于 2025-3-26 19:32:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽宁省| 新巴尔虎右旗| 商南县| 恩施市| 栾城县| 江源县| 南皮县| 防城港市| 马鞍山市| 桃园县| 即墨市| 江陵县| 丹江口市| 政和县| 大连市| 松桃| 娱乐| 大厂| 图木舒克市| 黄大仙区| 思南县| 钟山县| 广东省| 瑞金市| 江阴市| 甘泉县| 仙桃市| 光山县| 武宁县| 牡丹江市| 乐亭县| 永德县| 璧山县| 松溪县| 平凉市| 长泰县| 平南县| 灵石县| 郯城县| 遂宁市| 唐海县|