找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Information Systems; 10th International C Andrés Montoyo,Rafael Muńoz,Elisabeth Métais Conference proceedin

[復制鏈接]
樓主: Adentitious
51#
發(fā)表于 2025-3-30 09:28:52 | 只看該作者
Francis C. Y. Chik,Robert W. P. Luk,Korris F. L. Chungs.Presents acomprehensive and unique set of full-scale testsThis book presents the mainoutcomes of the first European research project on the seismic behavior ofadjustable steel storage pallet racking systems. In particular, it describes acomprehensive and unique set of full-scale tests designed to
52#
發(fā)表于 2025-3-30 13:57:45 | 只看該作者
53#
發(fā)表于 2025-3-30 16:37:07 | 只看該作者
On the Transformation of Sentences with Genitive Relations to SQL Queriesule based on a Hungarian question processor. One of the most crucial part of the system was the transformation of genitive relations to adequate SQL queries, since e.g.?questions begin with “Who” and “What” mostly contain such a relation. The genitive relation is one of the most complex semantic str
54#
發(fā)表于 2025-3-30 21:31:08 | 只看該作者
55#
發(fā)表于 2025-3-31 01:59:22 | 只看該作者
Application of Text Categorization to Astronomy Fieldn the astronomy field, astronomers often assign different names to table columns at their will even if they are about the same attributes of sky objects. As a result, it produces a big problem for data analysis over different tables. To solve this problem, the standard vocabulary called “unified con
56#
發(fā)表于 2025-3-31 06:06:18 | 只看該作者
57#
發(fā)表于 2025-3-31 11:17:23 | 只看該作者
58#
發(fā)表于 2025-3-31 17:07:26 | 只看該作者
Automatic Extraction of Semantic Relationships for WordNet by Means of Pattern Learning from Wikipedlopedia. Next, these patterns can be applied to extend existing ontologies or semantic networks with new relations. The experiments have been performed with the Simple English Wikipedia and WordNet 1.7. A new algorithm has been devised for automatically generalising the lexical patterns found in the
59#
發(fā)表于 2025-3-31 18:38:39 | 只看該作者
Combining Data-Driven Systems for Improving Named Entity Recognition An important preprocessing tool of these tasks consists of name entities recognition, which corresponds to a Name Entity Recognition (NER) task. In this paper we propose a completely automatic NER which involves identification of proper names in texts, and classification into a set of predefined ca
60#
發(fā)表于 2025-3-31 23:58:30 | 只看該作者
Natural Language Processing: Mature Enough for Requirements Documents Analysis?complete. Misunderstandings and errors of the requirements engineering phase propagate to later development phases and can potentially lead to a project failure..A promising way to overcome misunderstandings is to extract and validate terms used in requirements documents and relations between these
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
定西市| 吉安县| 文成县| 休宁县| 青州市| 海伦市| 铅山县| 辽中县| 共和县| 哈巴河县| 康马县| 桃园县| 合作市| 济南市| 山阳县| 庆云县| 施秉县| 胶州市| 黄平县| 盖州市| 崇左市| 合作市| 奈曼旗| 岑溪市| 米泉市| 吴桥县| 辉县市| 竹北市| 沁水县| 霞浦县| 信宜市| 綦江县| 汤阴县| 文昌市| 城固县| 睢宁县| 淳安县| 桂林市| 琼结县| 荆门市| 通城县|