找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 7th CCF Internationa Min Zhang,Vincent Ng,Hongying Zan Conference proceedings 2018 Sprin

[復(fù)制鏈接]
查看: 18858|回復(fù): 54
樓主
發(fā)表于 2025-3-21 20:03:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing
副標(biāo)題7th CCF Internationa
編輯Min Zhang,Vincent Ng,Hongying Zan
視頻videohttp://file.papertrans.cn/662/661809/661809.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Natural Language Processing and Chinese Computing; 7th CCF Internationa Min Zhang,Vincent Ng,Hongying Zan Conference proceedings 2018 Sprin
描述.This two volume set of LNAI 11108 and LNAI 11109 constitutes the refereed proceedings of the 7th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2018, held in Hohhot, China, in August 2018.. ..The 55 full papers and 31 short papers presented were carefully reviewed and selected from 308 submissions. The papers of the first volume are organized in the following topics: conversational Bot/QA/IR; knowledge graph/IE; machine learning for NLP; machine translation; and NLP applications. The papers of the second volume are organized as follows: NLP for social network; NLP fundamentals; text mining; and short papers..
出版日期Conference proceedings 2018
關(guān)鍵詞artificial intelligence; classification; data mining; HCI; human-computer interaction; information retrie
版次1
doihttps://doi.org/10.1007/978-3-319-99501-4
isbn_softcover978-3-319-99500-7
isbn_ebook978-3-319-99501-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing影響因子(影響力)




書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing被引頻次




書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing被引頻次學(xué)科排名




書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing年度引用




書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing年度引用學(xué)科排名




書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing讀者反饋




書(shū)目名稱(chēng)Natural Language Processing and Chinese Computing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:03 | 只看該作者
https://doi.org/10.1007/978-3-319-99501-4artificial intelligence; classification; data mining; HCI; human-computer interaction; information retrie
板凳
發(fā)表于 2025-3-22 03:56:08 | 只看該作者
地板
發(fā)表于 2025-3-22 07:20:01 | 只看該作者
5#
發(fā)表于 2025-3-22 11:07:46 | 只看該作者
6#
發(fā)表于 2025-3-22 14:24:56 | 只看該作者
7#
發(fā)表于 2025-3-22 18:13:54 | 只看該作者
8#
發(fā)表于 2025-3-22 21:53:06 | 只看該作者
9#
發(fā)表于 2025-3-23 05:19:57 | 只看該作者
Which Embedding Level is Better for Semantic Representation? An?Empirical Research on Chinese Phrased investigate the performance of the two basic units. Empirical results show that with all composing methods, word embedding out performs character embedding on both tasks, which indicates that word level is more suitable for composing semantic representation.
10#
發(fā)表于 2025-3-23 08:06:02 | 只看該作者
Improving Word Embeddings for Antonym Detection Using Thesauri and SentiWordNetord in SentiWordNet. We conduct evaluations on three relevant tasks, namely GRE antonym detection, word similarity, and semantic textual similarity. The experiment results show that our antonym-sensitive embedding outperforms common word embeddings in these tasks, demonstrating the efficacy of our methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 04:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
根河市| 平泉县| 贵定县| 木兰县| 舞钢市| 荣成市| 黎平县| 阿坝| 义马市| 汉阴县| 房山区| 淮南市| 华安县| 合山市| 桂林市| 洱源县| 平陆县| 柏乡县| 林周县| 岳阳县| 郑州市| 钦州市| 大安市| 高台县| 祁东县| 锡林浩特市| 叶城县| 册亨县| 南京市| 卫辉市| 黔江区| 平乡县| 铁岭县| 丁青县| 中超| 梅河口市| 鹤庆县| 中山市| 西和县| 同仁县| 塔城市|