找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing Recipes; Unlocking Text Data Akshay Kulkarni,Adarsha Shivananda Book 20191st edition Akshay Kulkarni and Adars

[復(fù)制鏈接]
查看: 10261|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:44:22 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Natural Language Processing Recipes
副標(biāo)題Unlocking Text Data
編輯Akshay Kulkarni,Adarsha Shivananda
視頻videohttp://file.papertrans.cn/662/661798/661798.mp4
概述Covers advanced programming recipes in natural language processing.Covers recent concepts such as RNN and embedding in national language processing.Includes many practical code examples using Python
圖書封面Titlebook: Natural Language Processing Recipes; Unlocking Text Data  Akshay Kulkarni,Adarsha Shivananda Book 20191st edition Akshay Kulkarni and Adars
描述Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis.?.Natural Language Processing Recipes. starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing..By using the recipes in thisbook, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient.?.What You Will Learn.Apply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more.Implement the
出版日期Book 20191st edition
關(guān)鍵詞Natural language processing; Text analytics; NLP using python; Machine learning; Deep Learning; Python; Un
版次1
doihttps://doi.org/10.1007/978-1-4842-4267-4
isbn_ebook978-1-4842-4267-4
copyrightAkshay Kulkarni and Adarsha Shivananda 2019
The information of publication is updating

書目名稱Natural Language Processing Recipes影響因子(影響力)




書目名稱Natural Language Processing Recipes影響因子(影響力)學(xué)科排名




書目名稱Natural Language Processing Recipes網(wǎng)絡(luò)公開度




書目名稱Natural Language Processing Recipes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Natural Language Processing Recipes被引頻次




書目名稱Natural Language Processing Recipes被引頻次學(xué)科排名




書目名稱Natural Language Processing Recipes年度引用




書目名稱Natural Language Processing Recipes年度引用學(xué)科排名




書目名稱Natural Language Processing Recipes讀者反饋




書目名稱Natural Language Processing Recipes讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:17:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:34:15 | 只看該作者
l world, making your development time quicker and more efficient.?.What You Will Learn.Apply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more.Implement the 978-1-4842-4267-4
地板
發(fā)表于 2025-3-22 06:45:20 | 只看該作者
ss-sectional studies. Among adults the median total sitting time was 6.4?h/day. Self-reported sedentary time was 5.6?h/day which was more than 2??h/day less than that observed from device-based measured sitting time (median 8.3?h/day). Reported television (TV) watching time showed a median of 2.2?h/
5#
發(fā)表于 2025-3-22 11:24:27 | 只看該作者
6#
發(fā)表于 2025-3-22 15:21:26 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:14 | 只看該作者
8#
發(fā)表于 2025-3-22 23:43:15 | 只看該作者
9#
發(fā)表于 2025-3-23 04:33:39 | 只看該作者
10#
發(fā)表于 2025-3-23 07:14:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陕西省| 汉阴县| 仲巴县| 通州区| 南京市| 徐水县| 大洼县| 丹阳市| 霞浦县| 灌云县| 奈曼旗| 调兵山市| 朝阳区| 花莲市| 龙泉市| 西充县| 石景山区| 福州市| 凌云县| 新乡县| 同仁县| 喀喇沁旗| 高唐县| 仙居县| 枣阳市| 涪陵区| 石河子市| 拉萨市| 广灵县| 游戏| 松江区| 南陵县| 武冈市| 兴山县| 赤峰市| 湖北省| 神农架林区| 庆元县| 滁州市| 高陵县| 定南县|