找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Function Algebras; Charles E. Rickart Textbook 1979 Springer-Verlag New York Inc. 1979 Funktionenalgebra.Lemma.Natural.Vector spac

[復(fù)制鏈接]
樓主: iniquity
21#
發(fā)表于 2025-3-25 05:35:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:55:33 | 只看該作者
Maximum Properties of Holomorphic Functions,ssume until further notice that [Σ, .] is a natural system. The next theorem is an extension of the local maximum principle (given in Theorem 14.2) to almost .-holomorphic functions (Definition 17.3 (ii)).
23#
發(fā)表于 2025-3-25 11:57:26 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:05 | 只看該作者
25#
發(fā)表于 2025-3-25 21:01:09 | 只看該作者
26#
發(fā)表于 2025-3-26 03:51:26 | 只看該作者
,The ?ilov Boundary and Local Maximum Principle,act set K ?? Σ that dominates φ; i.e..In general the dominating compact set K will not be uniquely determined. For example any larger compact set will also serve. Denote by K. the collection of all compact subsets of Σ that dominate φ. A set K. ∈ K. is called a . for φ if it is minimal; i.e. no comp
27#
發(fā)表于 2025-3-26 07:29:55 | 只看該作者
Holomorphic Functions,in n variables. In the case of an arbitrary pair [Σ, .] the analogy with [?., ?] suggests consideration of functions that are defined on subsets of Σ and are local uniform limits of elements from the algebra G. Such functions turn out to have many nice properties. On the other hand, as might be expe
28#
發(fā)表于 2025-3-26 08:40:32 | 只看該作者
29#
發(fā)表于 2025-3-26 13:29:31 | 只看該作者
30#
發(fā)表于 2025-3-26 17:44:53 | 只看該作者
Varieties,sions. As might be expected, the fundamental idea is to let the .-holomorphic functions play a role in the abstract situation analogous to that of the ordinary holomorphic functions in the finite dimensional case. However, in the general case it turns out to be desirable to formulate the definition
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠来县| 涟源市| 浦北县| 化德县| 河源市| 潞城市| 汝南县| 会理县| 房山区| 赤峰市| 桑日县| 托克托县| 科技| 东宁县| 清原| 郎溪县| 鲁甸县| 衡东县| 佛山市| 新龙县| 绥宁县| 绥化市| 天祝| 伊宁县| 佛冈县| 基隆市| 柳江县| 花莲市| 揭东县| 达日县| 濮阳市| 林西县| 芦溪县| 石家庄市| 墨竹工卡县| 寻乌县| 遂平县| 柳江县| 都江堰市| 石首市| 泸溪县|