找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nanoinformatics; Isao Tanaka Book‘‘‘‘‘‘‘‘ 2018 The Editor(s) (if applicable) and The Author(s) 2018 Machine learning.Big data.Atomic resol

[復(fù)制鏈接]
樓主: nourish
11#
發(fā)表于 2025-3-23 11:23:37 | 只看該作者
Structural Relaxation of Oxide Compounds from the High-Pressure Phasenquenchable pressure-induced phase (A-type structure) is not the stable phase under high pressure. Knowledge about the unquenchable and/or metastable phases in recovered high-pressure products is beneficial for advanced computational materials design.
12#
發(fā)表于 2025-3-23 17:22:54 | 只看該作者
13#
發(fā)表于 2025-3-23 21:08:51 | 只看該作者
in both the academic and industry sectors.Presents interdiscThis open access book brings out the state of the art on how informatics-based tools are used and expected to be used in nanomaterials research. There has been great progress in the area in which “big-data” generated by experiments or compu
14#
發(fā)表于 2025-3-24 00:29:01 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:07 | 只看該作者
Machine Learning Predictions of Factors Affecting the Activity of Heterogeneous Metal Catalystsmer–N?rskov d-band model. The present work demonstrates the possibility of employing state-of-the-art machine learning methods to predict the d-band centers of metals and bimetals while using negligible CPU time compared to the more common first-principles approach.
16#
發(fā)表于 2025-3-24 07:10:45 | 只看該作者
Fabrication, Characterization, and Modulation of Functional Nanolayerstaxial growth techniques, especially “reactive solid-phase epitaxy” of functional oxides and chalcogenides, are reviewed based on the authors’ efforts. Additionally, this chapter reviews several modulation methods of optical, electrical, and magnetic properties of functional oxide nanolayers.
17#
發(fā)表于 2025-3-24 13:25:42 | 只看該作者
Descriptors for Machine Learning of Materials Dataements and structures of compounds are known, these representations are difficult to use as descriptors in their unchanged forms. This chapter shows how compounds in a dataset can be represented as descriptors and applied to machine-learning models for materials datasets.
18#
發(fā)表于 2025-3-24 18:12:52 | 只看該作者
19#
發(fā)表于 2025-3-24 20:38:07 | 只看該作者
20#
發(fā)表于 2025-3-25 02:15:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
耒阳市| 龙岩市| 浦城县| 湖州市| 长汀县| 民和| 渝中区| 恩平市| 吴江市| 洛阳市| 三河市| 南平市| 手游| 准格尔旗| 宁安市| 临西县| 蛟河市| 和顺县| 汉中市| 横峰县| 南昌县| 三门县| 当涂县| 拜城县| 安塞县| 晋江市| 囊谦县| 玉林市| 九江县| 梁平县| 清河县| 崇阳县| 濉溪县| 万宁市| 饶河县| 邵东县| 炉霍县| 合阳县| 峨山| 鄂托克前旗| 济南市|