找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nahost Jahrbuch 2000; Politik, Wirtschaft Deutsches Orient-Institut,Thomas Koszinowski,Hansp Book 2001 Springer Fachmedien Wiesbaden 2001

[復(fù)制鏈接]
樓主: obdurate
21#
發(fā)表于 2025-3-25 04:42:13 | 只看該作者
Aziz Alkazazimodel-family is designed. The objective of this procedure is to adapt the closed-loop behaviour of the different models of the multimodel-family to an required behaviour. Here the required behaviour is described by a pole-configuration of the closed-loop system. One can get this desired pole-config
22#
發(fā)表于 2025-3-25 10:54:10 | 只看該作者
23#
發(fā)表于 2025-3-25 12:29:06 | 只看該作者
24#
發(fā)表于 2025-3-25 17:10:29 | 只看該作者
Thomas Koszinowskig eigenvector . of the corresponding shape matrix. We consider this problem under asymptotic scenarios that allow the difference .?:=?.???. between both largest eigenvalues of the underlying shape matrix to converge to zero as the sample size . diverges to infinity. Such scenarios make the problem o
25#
發(fā)表于 2025-3-25 21:52:30 | 只看該作者
Andreas Rieckg eigenvector . of the corresponding shape matrix. We consider this problem under asymptotic scenarios that allow the difference .?:=?.???. between both largest eigenvalues of the underlying shape matrix to converge to zero as the sample size . diverges to infinity. Such scenarios make the problem o
26#
發(fā)表于 2025-3-26 00:44:22 | 只看該作者
Sigrid Faath Recently, estimates of a sphericity measure are needed in high-dimensional shrinkage covariance matrix estimation problems, wherein the (oracle) shrinkage parameter minimizing the mean squared error (MSE) depends on the unknown sphericity parameter. The purpose of this chapter is to investigate the
27#
發(fā)表于 2025-3-26 04:52:01 | 只看該作者
28#
發(fā)表于 2025-3-26 09:31:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:55:18 | 只看該作者
30#
發(fā)表于 2025-3-26 19:53:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辉县市| 永善县| 福海县| 桓台县| 厦门市| 曲松县| 开化县| 望谟县| 南陵县| 理塘县| 都昌县| 壶关县| 桂东县| 扶余县| 麻阳| 高尔夫| 巩义市| 九江县| 潮安县| 康平县| 东山县| 绍兴县| 惠安县| 永济市| 永清县| 健康| 合作市| 团风县| 成都市| 青岛市| 托克托县| 逊克县| 乌鲁木齐市| 普洱| 修文县| 金山区| 漾濞| 蛟河市| 镇巴县| 乌拉特中旗| 丹阳市|