找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: NASA Formal Methods; Third International Mihaela Bobaru,Klaus Havelund,Rajeev Joshi Conference proceedings 2011 Springer Berlin Heidelberg

[復(fù)制鏈接]
樓主: 輕舟
11#
發(fā)表于 2025-3-23 11:31:07 | 只看該作者
12#
發(fā)表于 2025-3-23 16:31:38 | 只看該作者
13#
發(fā)表于 2025-3-23 20:31:25 | 只看該作者
14#
發(fā)表于 2025-3-24 00:44:42 | 只看該作者
15#
發(fā)表于 2025-3-24 04:53:50 | 只看該作者
16#
發(fā)表于 2025-3-24 09:35:00 | 只看該作者
17#
發(fā)表于 2025-3-24 13:34:05 | 只看該作者
Conference proceedings 2011ment, compositional verification techniques; static and dynamic analysis techniques, fault protection, cyber security, specification formalisms, requirements analysis, and applications of formal techniques.
18#
發(fā)表于 2025-3-24 17:54:55 | 只看該作者
From Retrospective Verification to Forward-Looking Developmenttable for refinement tools. For other programs, the clearest specifications may be given by pseudo-code, but such specification may not be suitable for some verification tools. In this talk, I will discuss verification tools and refinement-based tools, considering how they may be combined.
19#
發(fā)表于 2025-3-24 22:32:06 | 只看該作者
Towards Flight Control Verification Using Automated Theorem Proving design. Next, using the conditions for a stable dynamical system, an exclusion region of the Nichols Plot is defined. MetiTarski is then used to prove that the exclusion region is never entered. We present a case study of the proposed approach applied to the lateral autopilot of a Model 24 Learjet.
20#
發(fā)表于 2025-3-25 03:00:16 | 只看該作者
Generalized Rabin(1) Synthesis with Applications to Robust System Synthesisuce generalized Rabin(1) synthesis as a solution to this problem. Our approach inherits the good algorithmic properties of generalized reactivity(1) synthesis but extends it to also allow co-Büchi-type assumptions and guarantees, which makes it usable for the synthesis of robust systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雷波县| 海丰县| 安岳县| 剑河县| 阳江市| 香港| 华坪县| 咸宁市| 法库县| 万宁市| 峨眉山市| 平原县| 巩留县| 尤溪县| 德令哈市| 南安市| 汶川县| 西乌珠穆沁旗| 富阳市| 昭平县| 尼勒克县| 平和县| 雷山县| 札达县| 新民市| 当涂县| 乐昌市| 正安县| 岚皋县| 冀州市| 嫩江县| 福鼎市| 北海市| 田林县| 大英县| 蒙山县| 桂平市| 黎川县| 万安县| 谷城县| 新泰市|