找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: N=2 Supersymmetric Dynamics for Pedestrians; Yuji Tachikawa Book 2015 Hindustan Book Agency 2015 Electromagnetic Duality.Gaiotto Dualities

[復(fù)制鏈接]
樓主: JAR
21#
發(fā)表于 2025-3-25 06:46:57 | 只看該作者
Book 2015y. Beyond the perturbative regime, however, this is a notoriously difficult problem. Requiring invariance under supersymmetry turns out to be a suitable tool for analyzing supersymmetric gauge theories over a larger region of the space of parameters. Supersymmetric quantum field theories in four dim
22#
發(fā)表于 2025-3-25 08:06:14 | 只看該作者
978-3-319-08821-1Hindustan Book Agency 2015
23#
發(fā)表于 2025-3-25 14:24:11 | 只看該作者
24#
發(fā)表于 2025-3-25 18:21:11 | 只看該作者
Yuji TachikawaAuthored by a leading researcher in the field.Modern primer on the subject at the graduate level.Course-based, concise and self-contained.Includes supplementary material:
25#
發(fā)表于 2025-3-25 21:44:06 | 只看該作者
Electromagnetic Duality and Monopoles,The electromagnetic duality of the Maxwell theory, exchanging electric and magnetic fields, plays a central role in this lecture note. It is therefore convenient to review it here, without the extra complication of supersymmetry. The basic features of magnetic monopoles will also be recalled.
26#
發(fā)表于 2025-3-26 02:40:03 | 只看該作者
27#
發(fā)表于 2025-3-26 05:33:00 | 只看該作者
28#
發(fā)表于 2025-3-26 12:32:09 | 只看該作者
Curves and 6d , Theory,We have seen that the low energy dynamics of the SU(2) pure gauge theory and the SU(2) gauge theory with one flavor can both be expressed in terms of the complex curves (.), (.). The aim of this chapter is to explain that these two-dimensional spaces can be given a physical interpretation.
29#
發(fā)表于 2025-3-26 12:40:01 | 只看該作者
30#
發(fā)表于 2025-3-26 18:41:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尚义县| 天津市| 东丰县| 凤翔县| 新泰市| 方山县| 文安县| 饶阳县| 扎鲁特旗| 海原县| 铁力市| 革吉县| 河南省| 汶川县| 武功县| 临潭县| 永济市| 临高县| 喀什市| 华池县| 芷江| 翁牛特旗| 巴彦县| 泾源县| 巢湖市| 隆林| 宁强县| 巴南区| 三明市| 凤翔县| 岳阳县| 无为县| 崇文区| 新源县| 吉木萨尔县| 定远县| 交城县| 新晃| 合江县| 尼木县| 科尔|