找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis and Numerical Methods for Science and Technology; Volume 5 Evolution P Robert Dautray,Jacques-Louis Lions BookLatest

[復(fù)制鏈接]
查看: 41471|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:35:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mathematical Analysis and Numerical Methods for Science and Technology
副標(biāo)題Volume 5 Evolution P
編輯Robert Dautray,Jacques-Louis Lions
視頻videohttp://file.papertrans.cn/643/642257/642257.mp4
圖書封面Titlebook: Mathematical Analysis and Numerical Methods for Science and Technology; Volume 5 Evolution P Robert Dautray,Jacques-Louis Lions BookLatest
描述299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new ‘explicit‘ expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable.
出版日期BookLatest edition
關(guān)鍵詞Banach Space; Hilbert space; calculus; differential equation; functional analysis; mathematical analysis;
版次1
doihttps://doi.org/10.1007/978-3-642-58090-1
copyrightSpringer-Verlag Berlin Heidelberg 2000
The information of publication is updating

書目名稱Mathematical Analysis and Numerical Methods for Science and Technology影響因子(影響力)




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology影響因子(影響力)學(xué)科排名




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology網(wǎng)絡(luò)公開度




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology被引頻次




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology被引頻次學(xué)科排名




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology年度引用




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology年度引用學(xué)科排名




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology讀者反饋




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:20:07 | 只看該作者
地板
發(fā)表于 2025-3-22 08:26:55 | 只看該作者
5#
發(fā)表于 2025-3-22 12:32:16 | 只看該作者
6#
發(fā)表于 2025-3-22 15:51:57 | 只看該作者
http://image.papertrans.cn/n/image/642257.jpg
7#
發(fā)表于 2025-3-22 20:30:03 | 只看該作者
https://doi.org/10.1007/978-3-642-58090-1Banach Space; Hilbert space; calculus; differential equation; functional analysis; mathematical analysis;
8#
發(fā)表于 2025-3-22 22:35:20 | 只看該作者
9#
發(fā)表于 2025-3-23 02:28:25 | 只看該作者
10#
發(fā)表于 2025-3-23 06:26:51 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
诸暨市| 渑池县| 庄河市| 德州市| 长宁区| 婺源县| 连州市| 阳原县| 凤山市| 河曲县| 蓬溪县| 湄潭县| 辉县市| 鸡东县| 马公市| 海宁市| 海淀区| 滁州市| 西宁市| 方山县| 黑水县| 肃北| 高淳县| 中牟县| 聂荣县| 五常市| 稻城县| 斗六市| 景洪市| 天峻县| 陆丰市| 杭锦后旗| 天水市| 杭锦后旗| 徐州市| 乌兰察布市| 萨嘎县| 永寿县| 张掖市| 古田县| 垦利县|