找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multivariate Wavelet Frames; Maria Skopina,Aleksandr Krivoshein,Vladimir Protas Book 2016 Springer Nature Singapore Pte Ltd. 2016 Frames.W

[復(fù)制鏈接]
查看: 22327|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:15:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Multivariate Wavelet Frames
編輯Maria Skopina,Aleksandr Krivoshein,Vladimir Protas
視頻videohttp://file.papertrans.cn/642/641346/641346.mp4
概述Discusses algorithmic methods for wavelet construction.Presents detailed theoretical justifications of the methods discussed.Supplies an extensive collection of examples
叢書名稱Industrial and Applied Mathematics
圖書封面Titlebook: Multivariate Wavelet Frames;  Maria Skopina,Aleksandr Krivoshein,Vladimir Protas Book 2016 Springer Nature Singapore Pte Ltd. 2016 Frames.W
描述.This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult..Anotherimportant feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in
出版日期Book 2016
關(guān)鍵詞Frames; Wavelet Frames; Wavelet Bases; Matrix Dilation; Orthogonal and Bi-orthogonal Bases; Graphic Signa
版次1
doihttps://doi.org/10.1007/978-981-10-3205-9
isbn_softcover978-981-10-9817-8
isbn_ebook978-981-10-3205-9Series ISSN 2364-6837 Series E-ISSN 2364-6845
issn_series 2364-6837
copyrightSpringer Nature Singapore Pte Ltd. 2016
The information of publication is updating

書目名稱Multivariate Wavelet Frames影響因子(影響力)




書目名稱Multivariate Wavelet Frames影響因子(影響力)學(xué)科排名




書目名稱Multivariate Wavelet Frames網(wǎng)絡(luò)公開度




書目名稱Multivariate Wavelet Frames網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Multivariate Wavelet Frames被引頻次




書目名稱Multivariate Wavelet Frames被引頻次學(xué)科排名




書目名稱Multivariate Wavelet Frames年度引用




書目名稱Multivariate Wavelet Frames年度引用學(xué)科排名




書目名稱Multivariate Wavelet Frames讀者反饋




書目名稱Multivariate Wavelet Frames讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:26:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:56:37 | 只看該作者
Industrial and Applied Mathematicshttp://image.papertrans.cn/n/image/641346.jpg
地板
發(fā)表于 2025-3-22 04:42:13 | 只看該作者
https://doi.org/10.1007/978-981-10-3205-9Frames; Wavelet Frames; Wavelet Bases; Matrix Dilation; Orthogonal and Bi-orthogonal Bases; Graphic Signa
5#
發(fā)表于 2025-3-22 09:39:54 | 只看該作者
Maria Skopina,Aleksandr Krivoshein,Vladimir ProtasDiscusses algorithmic methods for wavelet construction.Presents detailed theoretical justifications of the methods discussed.Supplies an extensive collection of examples
6#
發(fā)表于 2025-3-22 14:38:44 | 只看該作者
7#
發(fā)表于 2025-3-22 19:57:03 | 只看該作者
Book 2016ll known, its practical implementation in the multidimensional setting is difficult..Anotherimportant feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in
8#
發(fā)表于 2025-3-22 22:58:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:40:13 | 只看該作者
10#
發(fā)表于 2025-3-23 08:09:58 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 01:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会昌县| 岳池县| 拉萨市| 准格尔旗| 栾城县| 南郑县| 资阳市| 通州区| 开远市| 含山县| 钦州市| 疏附县| 黄平县| 卢湾区| 红安县| 类乌齐县| 汤原县| 吴桥县| 临城县| 屯留县| 三原县| 西充县| 昔阳县| 高清| 日土县| 罗源县| 红河县| 荥阳市| 惠州市| 西乌珠穆沁旗| 永州市| 虎林市| 皋兰县| 疏勒县| 曲周县| 含山县| 托克逊县| 娱乐| 红桥区| 蓬莱市| 资源县|