找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multivariate Statistical Machine Learning Methods for Genomic Prediction; Osval Antonio Montesinos López,Abelardo Montesinos Book‘‘‘‘‘‘‘‘

[復(fù)制鏈接]
查看: 48654|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:37:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction
編輯Osval Antonio Montesinos López,Abelardo Montesinos
視頻videohttp://file.papertrans.cn/642/641329/641329.mp4
概述This is an Open Access book published under the CC-BY 4.0 license.Highlights statistical and machine learning models for complex genetic and environmental interactions.Offers a practical approach usin
圖書封面Titlebook: Multivariate Statistical Machine Learning Methods for Genomic Prediction;  Osval Antonio Montesinos López,Abelardo Montesinos Book‘‘‘‘‘‘‘‘
描述This book is open access under a CC BY 4.0 license.This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool.? To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension..The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool..
出版日期Book‘‘‘‘‘‘‘‘ 2022
關(guān)鍵詞open access; Statistical learning; Bayesian regression; Deep learning; Non linear regression; Plant breed
版次1
doihttps://doi.org/10.1007/978-3-030-89010-0
isbn_softcover978-3-030-89012-4
isbn_ebook978-3-030-89010-0
copyrightThe Editor(s) (if applicable) and The Author(s) 2022
The information of publication is updating

書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction影響因子(影響力)




書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction影響因子(影響力)學(xué)科排名




書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction網(wǎng)絡(luò)公開度




書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction被引頻次




書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction被引頻次學(xué)科排名




書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction年度引用




書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction年度引用學(xué)科排名




書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction讀者反饋




書目名稱Multivariate Statistical Machine Learning Methods for Genomic Prediction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:53:09 | 只看該作者
地板
發(fā)表于 2025-3-22 08:16:50 | 只看該作者
5#
發(fā)表于 2025-3-22 10:45:38 | 只看該作者
6#
發(fā)表于 2025-3-22 14:19:52 | 只看該作者
978-3-030-89012-4The Editor(s) (if applicable) and The Author(s) 2022
7#
發(fā)表于 2025-3-22 20:19:01 | 只看該作者
Multivariate Statistical Machine Learning Methods for Genomic Prediction
8#
發(fā)表于 2025-3-22 22:47:04 | 只看該作者
Multivariate Statistical Machine Learning Methods for Genomic Prediction978-3-030-89010-0
9#
發(fā)表于 2025-3-23 03:56:37 | 只看該作者
10#
發(fā)表于 2025-3-23 07:09:23 | 只看該作者
Book‘‘‘‘‘‘‘‘ 2022ticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 05:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻栗坡县| 东莞市| 五台县| 来凤县| 乌苏市| 博罗县| 沈丘县| 内丘县| 神农架林区| 高陵县| 凤城市| 含山县| 剑川县| 甘洛县| 荆门市| 新乐市| 日土县| 湘乡市| 迁安市| 屏山县| 汤原县| 壤塘县| 林口县| 大竹县| 中卫市| 普兰店市| 南阳市| 南江县| 榆中县| 白城市| 开封县| 犍为县| 色达县| 独山县| 喜德县| 衡阳市| 永嘉县| 合肥市| 天等县| 从化市| 平顺县|