找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multimodal and Tensor Data Analytics for Industrial Systems Improvement; Nathan Gaw,Panos M. Pardalos,Mostafa Reisi Gahrooe Book 2024 The

[復制鏈接]
查看: 12848|回復: 35
樓主
發(fā)表于 2025-3-21 19:41:59 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement
編輯Nathan Gaw,Panos M. Pardalos,Mostafa Reisi Gahrooe
視頻videohttp://file.papertrans.cn/641/640770/640770.mp4
概述Demonstrates practical applications focusing on manufacturing, healthcare, agriculture, and other applications.Discussion of pros and cons for each methodology, providing a pathway for future research
叢書名稱Springer Optimization and Its Applications
圖書封面Titlebook: Multimodal and Tensor Data Analytics for Industrial Systems Improvement;  Nathan Gaw,Panos M. Pardalos,Mostafa Reisi Gahrooe Book 2024 The
描述This volume covers the latest methodologies for using multimodal data fusion and analytics across several applications. The curated content presents recent developments and challenges in multimodal data analytics and shines a light on a pathway toward new research developments. Chapters are composed by eminent researchers and practitioners who present their research results and ideas based on their expertise. As data collection instruments have improved in quality and quantity for many applications, there has been an unprecedented increase in the availability of data from multiple sources, known as modalities. Modalities express a large degree of heterogeneity in their form, scale, resolution, and accuracy. Determining how to optimally combine the data for prediction and characterization is becoming increasingly important.?Several research studies have investigated integrating multimodality data and discussed the challenges and limitations of multimodal data fusion. This volume provides a topical overview of various methods in multimodal data fusion for industrial engineering and operations research applications, such as manufacturing and healthcare..Advancements in sensing technol
出版日期Book 2024
關鍵詞multimodal data; multivariate statistics; tensor data analytics; Bayesian multimodal; spatio-temporal da
版次1
doihttps://doi.org/10.1007/978-3-031-53092-0
isbn_softcover978-3-031-53094-4
isbn_ebook978-3-031-53092-0Series ISSN 1931-6828 Series E-ISSN 1931-6836
issn_series 1931-6828
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement影響因子(影響力)




書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement影響因子(影響力)學科排名




書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement網(wǎng)絡公開度




書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement網(wǎng)絡公開度學科排名




書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement被引頻次




書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement被引頻次學科排名




書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement年度引用




書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement年度引用學科排名




書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement讀者反饋




書目名稱Multimodal and Tensor Data Analytics for Industrial Systems Improvement讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:25 | 只看該作者
https://doi.org/10.1007/978-3-031-53092-0multimodal data; multivariate statistics; tensor data analytics; Bayesian multimodal; spatio-temporal da
板凳
發(fā)表于 2025-3-22 04:10:52 | 只看該作者
地板
發(fā)表于 2025-3-22 07:36:25 | 只看該作者
5#
發(fā)表于 2025-3-22 10:36:14 | 只看該作者
6#
發(fā)表于 2025-3-22 13:41:04 | 只看該作者
7#
發(fā)表于 2025-3-22 19:16:01 | 只看該作者
8#
發(fā)表于 2025-3-23 00:44:25 | 只看該作者
Book 2024ity data and discussed the challenges and limitations of multimodal data fusion. This volume provides a topical overview of various methods in multimodal data fusion for industrial engineering and operations research applications, such as manufacturing and healthcare..Advancements in sensing technol
9#
發(fā)表于 2025-3-23 02:20:35 | 只看該作者
10#
發(fā)表于 2025-3-23 07:03:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
天门市| 灵宝市| 勃利县| 永济市| 海林市| 繁昌县| 咸丰县| 商南县| 大竹县| 清河县| 鄂托克前旗| 礼泉县| 鄯善县| 定安县| 柳林县| 孝感市| 苍山县| 宁国市| 迁安市| 玛沁县| 南雄市| 巩义市| 石台县| 祁连县| 咸丰县| 隆子县| 临泉县| 庆阳市| 潜江市| 仪陇县| 图片| 武城县| 淮阳县| 平果县| 四川省| 合水县| 谢通门县| 乌审旗| 深泽县| 清徐县| 藁城市|