找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multilinear Operator Integrals; Theory and Applicati Anna Skripka,Anna Tomskova Book 2019 Springer Nature Switzerland AG 2019 Fréchet Deriv

[復制鏈接]
查看: 39501|回復: 35
樓主
發(fā)表于 2025-3-21 18:12:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Multilinear Operator Integrals
副標題Theory and Applicati
編輯Anna Skripka,Anna Tomskova
視頻videohttp://file.papertrans.cn/641/640515/640515.mp4
概述Offers a comprehensive, structured treatment of the theory in both finite-dimensional and infinite-dimensional settings.Includes numerous applications of multilinear operator integral techniques, of i
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Multilinear Operator Integrals; Theory and Applicati Anna Skripka,Anna Tomskova Book 2019 Springer Nature Switzerland AG 2019 Fréchet Deriv
描述.This book provides a comprehensive treatment of multilinear operator integral techniques. The exposition is structured to be suitable for a course on methods and applications of multilinear operator integrals and also as a research aid. The ideas and contributions to the field are surveyed and up-to-date results and methods are presented. Most practical constructions of multiple operator integrals are included along with fundamental technical results and major applications to smoothness properties of operator functions (Lipschitz and H?lder continuity, differentiability), approximation of operator functions, spectral shift functions, spectral flow in the setting of noncommutative geometry, quantum differentiability, and differentiability of noncommutative L^p-norms. Main ideas are demonstrated in simpler cases, while more involved, technical proofs are outlined and supplemented with references. Selected open problems in the field are also presented..
出版日期Book 2019
關鍵詞Fréchet Derivative; Gateaux; Multilinear Schur Multiplier; Multiple Operator Integral; Noncommutative Lp
版次1
doihttps://doi.org/10.1007/978-3-030-32406-3
isbn_softcover978-3-030-32405-6
isbn_ebook978-3-030-32406-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Multilinear Operator Integrals影響因子(影響力)




書目名稱Multilinear Operator Integrals影響因子(影響力)學科排名




書目名稱Multilinear Operator Integrals網絡公開度




書目名稱Multilinear Operator Integrals網絡公開度學科排名




書目名稱Multilinear Operator Integrals被引頻次




書目名稱Multilinear Operator Integrals被引頻次學科排名




書目名稱Multilinear Operator Integrals年度引用




書目名稱Multilinear Operator Integrals年度引用學科排名




書目名稱Multilinear Operator Integrals讀者反饋




書目名稱Multilinear Operator Integrals讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:08:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:10:23 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:35 | 只看該作者
https://doi.org/10.1007/978-3-030-32406-3Fréchet Derivative; Gateaux; Multilinear Schur Multiplier; Multiple Operator Integral; Noncommutative Lp
5#
發(fā)表于 2025-3-22 10:47:10 | 只看該作者
978-3-030-32405-6Springer Nature Switzerland AG 2019
6#
發(fā)表于 2025-3-22 12:57:48 | 只看該作者
7#
發(fā)表于 2025-3-22 17:38:46 | 只看該作者
8#
發(fā)表于 2025-3-22 22:58:37 | 只看該作者
0075-8434 ved, technical proofs are outlined and supplemented with references. Selected open problems in the field are also presented..978-3-030-32405-6978-3-030-32406-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
9#
發(fā)表于 2025-3-23 03:32:47 | 只看該作者
10#
發(fā)表于 2025-3-23 08:55:41 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-23 12:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丹东市| 多伦县| 古田县| 车致| 康平县| 阳春市| 手游| 邯郸县| 友谊县| 漯河市| 道孚县| 开封市| 武隆县| 赫章县| 肃北| 株洲市| 阿鲁科尔沁旗| 固始县| 克什克腾旗| 高要市| 牟定县| 灵寿县| 措美县| 吉隆县| 佛山市| 九台市| 玛纳斯县| 罗平县| 随州市| 鞍山市| 雷波县| 玉溪市| 马公市| 卫辉市| 乌恰县| 金溪县| 聂荣县| 鄄城县| 尼木县| 河北区| 磐石市|