找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multi-aspect Learning; Methods and Applicat Richi Nayak,Khanh Luong Book 2023 Springer Nature Switzerland AG 2023 Multi-aspect Data Learnin

[復制鏈接]
查看: 24044|回復: 35
樓主
發(fā)表于 2025-3-21 17:16:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Multi-aspect Learning
副標題Methods and Applicat
編輯Richi Nayak,Khanh Luong
視頻videohttp://file.papertrans.cn/641/640046/640046.mp4
概述Provides a comprehensive review and in-depth discussion on the multi-aspect data learning.Focuses on the state-of-the-art approaches.A comprehensive review of methods dealing with the challenges of mu
叢書名稱Intelligent Systems Reference Library
圖書封面Titlebook: Multi-aspect Learning; Methods and Applicat Richi Nayak,Khanh Luong Book 2023 Springer Nature Switzerland AG 2023 Multi-aspect Data Learnin
描述.This book offers a detailed and comprehensive analysis of multi-aspect data learning, focusing especially on representation learning approaches for unsupervised machine learning. It covers state-of-the-art representation learning techniques for clustering and their applications in various domains. This is the first book to systematically review multi-aspect data learning, incorporating a range of concepts and applications. Additionally, it is the first to comprehensively investigate manifold learning for dimensionality reduction in multi-view data learning. The book presents the latest advances in matrix factorization, subspace clustering, spectral clustering and deep learning methods, with a particular emphasis on the challenges and characteristics of multi-aspect data. Each chapter includes a thorough discussion of state-of-the-art of multi-aspect data learning methods and important research gaps. The book provides readers with the necessary foundational knowledge to apply these methods to new domains and applications, as well as inspire new research in this emerging field..
出版日期Book 2023
關鍵詞Multi-aspect Data Learning; Multi-view Data Learning; Non-negative Matrix Factorization; Subspace Learn
版次1
doihttps://doi.org/10.1007/978-3-031-33560-0
isbn_softcover978-3-031-33562-4
isbn_ebook978-3-031-33560-0Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightSpringer Nature Switzerland AG 2023
The information of publication is updating

書目名稱Multi-aspect Learning影響因子(影響力)




書目名稱Multi-aspect Learning影響因子(影響力)學科排名




書目名稱Multi-aspect Learning網(wǎng)絡公開度




書目名稱Multi-aspect Learning網(wǎng)絡公開度學科排名




書目名稱Multi-aspect Learning被引頻次




書目名稱Multi-aspect Learning被引頻次學科排名




書目名稱Multi-aspect Learning年度引用




書目名稱Multi-aspect Learning年度引用學科排名




書目名稱Multi-aspect Learning讀者反饋




書目名稱Multi-aspect Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:24:30 | 只看該作者
1868-4394 he-art of multi-aspect data learning methods and important research gaps. The book provides readers with the necessary foundational knowledge to apply these methods to new domains and applications, as well as inspire new research in this emerging field..978-3-031-33562-4978-3-031-33560-0Series ISSN 1868-4394 Series E-ISSN 1868-4408
板凳
發(fā)表于 2025-3-22 02:29:14 | 只看該作者
地板
發(fā)表于 2025-3-22 06:45:10 | 只看該作者
5#
發(fā)表于 2025-3-22 10:22:38 | 只看該作者
6#
發(fā)表于 2025-3-22 13:47:20 | 只看該作者
978-3-031-33562-4Springer Nature Switzerland AG 2023
7#
發(fā)表于 2025-3-22 17:58:46 | 只看該作者
Multi-aspect Learning978-3-031-33560-0Series ISSN 1868-4394 Series E-ISSN 1868-4408
8#
發(fā)表于 2025-3-23 01:03:16 | 只看該作者
9#
發(fā)表于 2025-3-23 01:44:03 | 只看該作者
Book 2023nsupervised machine learning. It covers state-of-the-art representation learning techniques for clustering and their applications in various domains. This is the first book to systematically review multi-aspect data learning, incorporating a range of concepts and applications. Additionally, it is th
10#
發(fā)表于 2025-3-23 08:24:14 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东平县| 灵宝市| 榆林市| 曲靖市| 莒南县| 离岛区| 库伦旗| 永年县| 洞口县| 乌拉特前旗| 阜康市| 三穗县| 鄂托克前旗| 建瓯市| 公主岭市| 石泉县| 鸡西市| 政和县| 营山县| 沙湾县| 石城县| 义马市| 凤山县| 贡山| 昔阳县| 蚌埠市| 固始县| 荣昌县| 马边| 区。| 灵台县| 保德县| 繁昌县| 新民市| 鄂伦春自治旗| 怀宁县| 古田县| 五大连池市| 云安县| 罗平县| 元阳县|