找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases; Ashish Ghosh,Satchidananda Dehuri,Susmita Ghosh Book 20081

[復(fù)制鏈接]
查看: 36181|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:24:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases
編輯Ashish Ghosh,Satchidananda Dehuri,Susmita Ghosh
視頻videohttp://file.papertrans.cn/640/639985/639985.mp4
概述Assembles high quality original contributions that reflect and advance the state-of-the art in the area of Multi-objective Evolutionary Algorithms for Data Mining and Knowledge Discovery.Emphasizes on
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases;  Ashish Ghosh,Satchidananda Dehuri,Susmita Ghosh Book 20081
描述.Data Mining (DM) is the most commonly used name to describe such computational analysis of data and the results obtained must conform to several objectives such as accuracy, comprehensibility, interest for the user etc. Though there are many sophisticated techniques developed by various interdisciplinary fields only a few of them are well equipped to handle these multi-criteria issues of DM. Therefore, the DM issues have attracted considerable attention of the well established multiobjective genetic algorithm community to optimize the objectives in the tasks of DM...The present volume provides a collection of seven articles containing new and high quality research results demonstrating the significance of Multi-objective Evolutionary Algorithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases..
出版日期Book 20081st edition
關(guān)鍵詞Knowledge Discovery Form Databases; algorithm; algorithms; calculus; classification; clustering; data mini
版次1
doihttps://doi.org/10.1007/978-3-540-77467-9
isbn_softcover978-3-642-09615-0
isbn_ebook978-3-540-77467-9Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases影響因子(影響力)




書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases影響因子(影響力)學(xué)科排名




書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases網(wǎng)絡(luò)公開度




書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases被引頻次




書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases被引頻次學(xué)科排名




書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases年度引用




書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases年度引用學(xué)科排名




書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases讀者反饋




書目名稱Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:55:51 | 只看該作者
地板
發(fā)表于 2025-3-22 07:20:54 | 只看該作者
Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases978-3-540-77467-9Series ISSN 1860-949X Series E-ISSN 1860-9503
5#
發(fā)表于 2025-3-22 10:20:43 | 只看該作者
Studies in Computational Intelligencehttp://image.papertrans.cn/m/image/639985.jpg
6#
發(fā)表于 2025-3-22 16:03:27 | 只看該作者
https://doi.org/10.1007/978-3-540-77467-9Knowledge Discovery Form Databases; algorithm; algorithms; calculus; classification; clustering; data mini
7#
發(fā)表于 2025-3-22 18:14:41 | 只看該作者
8#
發(fā)表于 2025-3-22 22:15:28 | 只看該作者
1860-949X cles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases..978-3-642-09615-0978-3-540-77467-9Series ISSN 1860-949X Series E-ISSN 1860-9503
9#
發(fā)表于 2025-3-23 02:27:31 | 只看該作者
Book 20081st editionithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases..
10#
發(fā)表于 2025-3-23 06:15:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁门县| 黑龙江省| 潞城市| 鄂尔多斯市| 清远市| 玉田县| 桦甸市| 海门市| 福清市| 兰州市| 宜州市| 赫章县| 萨嘎县| 新泰市| 扎兰屯市| 闽清县| 安徽省| 祁门县| 桦川县| 句容市| 新河县| 天等县| 新建县| 吕梁市| 陆良县| 鸡西市| 白河县| 宣武区| 微山县| 通城县| 神池县| 文成县| 云安县| 镇坪县| 玉龙| 龙州县| 龙山县| 镇安县| 安龙县| 衡阳县| 万源市|