找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Motivic Integration; Antoine Chambert-Loir,Johannes Nicaise,Julien Seba Book 2018 Springer Science+Business Media, LLC, part of Springer N

[復(fù)制鏈接]
查看: 8771|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:42:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Motivic Integration
編輯Antoine Chambert-Loir,Johannes Nicaise,Julien Seba
視頻videohttp://file.papertrans.cn/640/639637/639637.mp4
概述Includes the first complete treatment of geometric motivic integration in a monograph.Covers the construction of arc schemes and Greenberg schemes.Provides a complete discussion of questions concernin
叢書名稱Progress in Mathematics
圖書封面Titlebook: Motivic Integration;  Antoine Chambert-Loir,Johannes Nicaise,Julien Seba Book 2018 Springer Science+Business Media, LLC, part of Springer N
描述This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration.?.With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.?.
出版日期Book 2018
關(guān)鍵詞Greenberg schemes; Grothendieck ring of varieties; arc spaces; birational invariants; p-adic integration
版次1
doihttps://doi.org/10.1007/978-1-4939-7887-8
isbn_softcover978-1-4939-9315-4
isbn_ebook978-1-4939-7887-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media, LLC, part of Springer Nature 2018
The information of publication is updating

書目名稱Motivic Integration影響因子(影響力)




書目名稱Motivic Integration影響因子(影響力)學(xué)科排名




書目名稱Motivic Integration網(wǎng)絡(luò)公開度




書目名稱Motivic Integration網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Motivic Integration被引頻次




書目名稱Motivic Integration被引頻次學(xué)科排名




書目名稱Motivic Integration年度引用




書目名稱Motivic Integration年度引用學(xué)科排名




書目名稱Motivic Integration讀者反饋




書目名稱Motivic Integration讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:07 | 只看該作者
Motivic Integration978-1-4939-7887-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
板凳
發(fā)表于 2025-3-22 01:39:02 | 只看該作者
地板
發(fā)表于 2025-3-22 04:39:21 | 只看該作者
5#
發(fā)表于 2025-3-22 10:46:19 | 只看該作者
Antoine Chambert-Loir,Johannes Nicaise,Julien SebaIncludes the first complete treatment of geometric motivic integration in a monograph.Covers the construction of arc schemes and Greenberg schemes.Provides a complete discussion of questions concernin
6#
發(fā)表于 2025-3-22 15:24:37 | 只看該作者
0743-1643 duate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.?.978-1-4939-9315-4978-1-4939-7887-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
7#
發(fā)表于 2025-3-22 19:43:40 | 只看該作者
8#
發(fā)表于 2025-3-23 00:38:33 | 只看該作者
0743-1643 chemes.Provides a complete discussion of questions concerninThis monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser an
9#
發(fā)表于 2025-3-23 04:00:10 | 只看該作者
Book 2018oted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ri
10#
發(fā)表于 2025-3-23 06:07:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
京山县| 长沙市| 湖州市| 高雄县| 团风县| 玉山县| 阳曲县| 清水县| 宜城市| 巴林左旗| 岳阳县| 黑山县| 武强县| 枣阳市| 彭阳县| 万全县| 兴义市| 绥芬河市| 江油市| 平泉县| 长宁区| 古田县| 沅陵县| 尖扎县| 永兴县| 岢岚县| 岐山县| 礼泉县| 会昌县| 曲阳县| 屏山县| 余干县| 富平县| 郑州市| 阿克| 瑞安市| 阆中市| 秀山| 平江县| 若羌县| 永定县|