找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; First International Ying Tan,Yuhui Shi,Kay Chen Tan Conference proceedings 2010 Springer-Verlag Berlin Hei

[復制鏈接]
41#
發(fā)表于 2025-3-28 15:26:25 | 只看該作者
Radial Basis Function Neural Network Based on PSO with Mutation Operation to Solve Function Approximthm. This algorithm combines Particle Swarm Optimization algorithm (PSO) with mutation operation to train RBFNN. PSO with mutation operation and genetic algorithm are respectively used to train weights and spreads of oRBFNN, which is traditional RBFNN with gradient learning in this article. Sum Squa
42#
發(fā)表于 2025-3-28 22:13:59 | 只看該作者
43#
發(fā)表于 2025-3-28 23:45:02 | 只看該作者
44#
發(fā)表于 2025-3-29 06:40:43 | 只看該作者
45#
發(fā)表于 2025-3-29 08:32:02 | 只看該作者
46#
發(fā)表于 2025-3-29 15:09:59 | 只看該作者
A System Identification Using DRNN Based on Swarm Intelligenceation during the past decade. In this paper, a learning algorithm for Original Elman neural networks (ENN) based on modified particle swarm optimization (MPSO), which is a swarm intelligent algorithm (SIA), is presented. MPSO and Elman are hybridized to form MPSO-ENN hybrid algorithm as a system ide
47#
發(fā)表于 2025-3-29 15:56:00 | 只看該作者
Force Identification by Using SVM and CPSO Techniqued utilizes a new SVM-CPSO model that hybridized the chaos particle swarm optimization (CPSO) technique and support vector machines (SVM) to tackle the problem of force identification. Both numerical simulations and experimental study are performed to demonstrate the effectiveness, robustness and app
48#
發(fā)表于 2025-3-29 22:41:19 | 只看該作者
49#
發(fā)表于 2025-3-30 02:47:19 | 只看該作者
0302-9743 onstitute the proceedings of the International Conference on Swarm Intelligence (ICSI 2010) held in Beijing, the capital of China, during June 12-15, 2010. ICSI 2010 was the ?rst gathering in the world for researchers working on all aspects of swarm intelligence, and providedan academic forum for th
50#
發(fā)表于 2025-3-30 05:30:57 | 只看該作者
David Beech (Chairman of IFIP WG 2.7)lect parameters of SVR. The proposed approach is used for forecasting logistics demand of Shanghai, The experimental results show that the above method obtained lesser training relative error and testing relative error.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 22:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
弥渡县| 泸西县| 永德县| 绥宁县| 芦溪县| 明光市| 衡山县| 井研县| 金坛市| 甘肃省| 阳山县| 丰台区| 大埔区| 吉隆县| 临高县| 东丽区| 龙海市| 永平县| 荥经县| 行唐县| 长子县| 嵩明县| 北流市| 九寨沟县| 滁州市| 宜黄县| 镇远县| 兰州市| 吴堡县| 达日县| 澳门| 香格里拉县| 新绛县| 新昌县| 阳信县| 汨罗市| 岱山县| 普兰店市| 奉新县| 凤山县| 崇仁县|