找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Morse Homology; Matthias Schwarz Book 1993 Springer Basel 1993 Finite.Manifold.Morphism.Topology.calculus.function.geometry.proof.theorem

[復(fù)制鏈接]
查看: 21068|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:28:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Morse Homology
編輯Matthias Schwarz
視頻videohttp://file.papertrans.cn/640/639458/639458.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Morse Homology;  Matthias Schwarz Book 1993 Springer Basel 1993 Finite.Manifold.Morphism.Topology.calculus.function.geometry.proof.theorem
描述1.1 Background The subject of this book is Morse homology as a combination of relative Morse theory and Conley‘s continuation principle. The latter will be useda s an instrument to express the homology encoded in a Morse complex associated to a fixed Morse function independent of this function. Originally, this type of Morse-theoretical tool was developed by Andreas Floer in order to find a proof of the famous Arnold conjecture, whereas classical Morse theory turned out to fail in the infinite-dimensional setting. In this framework, the homological variant of Morse theory is also known as Floer homology. This kind of homology theory is the central topic of this book. But first, it seems worthwhile to outline the standard Morse theory. 1.1.1 Classical Morse Theory The fact that Morse theory can be formulated in a homological way is by no means a new idea. The reader is referred to the excellent survey paper by Raoul Bott [Bol.
出版日期Book 1993
關(guān)鍵詞Finite; Manifold; Morphism; Topology; calculus; function; geometry; proof; theorem
版次1
doihttps://doi.org/10.1007/978-3-0348-8577-5
isbn_softcover978-3-0348-9688-7
isbn_ebook978-3-0348-8577-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel 1993
The information of publication is updating

書目名稱Morse Homology影響因子(影響力)




書目名稱Morse Homology影響因子(影響力)學(xué)科排名




書目名稱Morse Homology網(wǎng)絡(luò)公開度




書目名稱Morse Homology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Morse Homology被引頻次




書目名稱Morse Homology被引頻次學(xué)科排名




書目名稱Morse Homology年度引用




書目名稱Morse Homology年度引用學(xué)科排名




書目名稱Morse Homology讀者反饋




書目名稱Morse Homology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:51:21 | 只看該作者
Book 1993r homology. This kind of homology theory is the central topic of this book. But first, it seems worthwhile to outline the standard Morse theory. 1.1.1 Classical Morse Theory The fact that Morse theory can be formulated in a homological way is by no means a new idea. The reader is referred to the excellent survey paper by Raoul Bott [Bol.
板凳
發(fā)表于 2025-3-22 04:18:25 | 只看該作者
地板
發(fā)表于 2025-3-22 08:27:49 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/m/image/639458.jpg
5#
發(fā)表于 2025-3-22 11:44:42 | 只看該作者
https://doi.org/10.1007/978-3-0348-8577-5Finite; Manifold; Morphism; Topology; calculus; function; geometry; proof; theorem
6#
發(fā)表于 2025-3-22 13:27:10 | 只看該作者
Morse Homology978-3-0348-8577-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
7#
發(fā)表于 2025-3-22 19:13:55 | 只看該作者
0743-1643 ory. 1.1.1 Classical Morse Theory The fact that Morse theory can be formulated in a homological way is by no means a new idea. The reader is referred to the excellent survey paper by Raoul Bott [Bol.978-3-0348-9688-7978-3-0348-8577-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
8#
發(fā)表于 2025-3-22 21:12:03 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:58:46 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:45:12 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 22:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭觉县| 泰安市| 铜山县| 定兴县| 南岸区| 郧西县| 揭东县| 景洪市| 平安县| 乌拉特后旗| 霍邱县| 黎川县| 洞头县| 长岭县| 鹤岗市| 贵德县| 璧山县| 六安市| 武强县| 华池县| 武乡县| 会宁县| 通海县| 临颍县| 丰镇市| 黔西县| 桓仁| 郴州市| 塔城市| 铜陵市| 屏山县| 青浦区| 嘉禾县| 扶绥县| 留坝县| 盈江县| 四川省| 永善县| 商城县| 鲁山县| 通许县|