找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Monotone Nonautonomous Dynamical Systems; David N. Cheban Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licen

[復(fù)制鏈接]
查看: 44420|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:59:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems
編輯David N. Cheban
視頻videohttp://file.papertrans.cn/640/639056/639056.mp4
概述Systematizes research in this domain (mainly by the author and his co-authors) over the past 10 years.Devoted to the study of monotone non-autonomous dynamical systems and their applications.Interest
圖書(shū)封面Titlebook: Monotone Nonautonomous Dynamical Systems;  David N. Cheban Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive licen
描述.The monograph present ideas and methods, developed by the author, to solve the problem of existence of Bohr/Levitan almost periodic (respectively, almost recurrent in the sense of Bebutov, almost authomorphic, Poisson stable) solutions and global attractors of monotone nonautonomous differential/difference equations. Namely, the text provides answers to the following problems:?..1. Problem of existence of at least one Bohr/Levitan almost periodic solution for cooperative almost periodic differential/difference equations;??..2.?Problem of existence of at least one Bohr/Levitan almost periodic solution for uniformly stable and dissipative monotone differential equations (I. U. Bronshtein’s conjecture, 1975);?..3.?Problem of description of the structure of the global attractor for monotone nonautonomous dynamical systems; ??..4.?The structure of the invariant/minimal sets and global attractors for one-dimensional monotone nonautonomous dynamical systems; ??..5.?Asymptotic behavior of monotone nonautonomous dynamical systems with a ?rst integral (Poisson stable motions, convergence, asymptotically Poisson stable motions and structure of the Levinson center (compact global attractor) o
出版日期Book 2024
關(guān)鍵詞Nonautonomous dynamical systems; monotone dynamical systems; oscillations regimes; global attractors; as
版次1
doihttps://doi.org/10.1007/978-3-031-60057-9
isbn_softcover978-3-031-60059-3
isbn_ebook978-3-031-60057-9
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems影響因子(影響力)




書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems被引頻次




書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems被引頻次學(xué)科排名




書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems年度引用




書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems年度引用學(xué)科排名




書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems讀者反饋




書(shū)目名稱(chēng)Monotone Nonautonomous Dynamical Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:27 | 只看該作者
Book 2024most recurrent in the sense of Bebutov, almost authomorphic, Poisson stable) solutions and global attractors of monotone nonautonomous differential/difference equations. Namely, the text provides answers to the following problems:?..1. Problem of existence of at least one Bohr/Levitan almost periodi
板凳
發(fā)表于 2025-3-22 00:48:30 | 只看該作者
http://image.papertrans.cn/m/image/639056.jpg
地板
發(fā)表于 2025-3-22 05:43:37 | 只看該作者
https://doi.org/10.1007/978-3-031-60057-9Nonautonomous dynamical systems; monotone dynamical systems; oscillations regimes; global attractors; as
5#
發(fā)表于 2025-3-22 11:31:40 | 只看該作者
6#
發(fā)表于 2025-3-22 15:08:06 | 只看該作者
David N. ChebanSystematizes research in this domain (mainly by the author and his co-authors) over the past 10 years.Devoted to the study of monotone non-autonomous dynamical systems and their applications.Interest
7#
發(fā)表于 2025-3-22 17:10:05 | 只看該作者
8#
發(fā)表于 2025-3-22 23:26:21 | 只看該作者
9#
發(fā)表于 2025-3-23 02:44:09 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:37:17 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涪陵区| 津市市| 六枝特区| 平昌县| 分宜县| 仁寿县| 屯门区| 宁化县| 平乐县| 涿鹿县| 秦皇岛市| 平顺县| 前郭尔| 澎湖县| 吉首市| 福鼎市| 万全县| 蓝山县| 铜山县| 龙海市| 伽师县| 怀仁县| 凌云县| 长丰县| 太仆寺旗| 钟祥市| 嘉黎县| 大余县| 通榆县| 隆林| 芦山县| 肇东市| 平舆县| 合川市| 甘孜县| 轮台县| 呼图壁县| 遂平县| 平邑县| 张家界市| 太康县|