找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Moduli Spaces of Riemannian Metrics; Wilderich Tuschmann,David J. Wraith Textbook 2015 Springer Basel 2015 Riemannian metrics.curvature.ma

[復(fù)制鏈接]
查看: 15459|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:40:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Moduli Spaces of Riemannian Metrics
編輯Wilderich Tuschmann,David J. Wraith
視頻videohttp://file.papertrans.cn/638/637942/637942.mp4
概述First book dealing exclusively with this topic which has hitherto only been treated in original research papers.Develops relevant background and explains the ideas involved.Short, concise text with to
叢書名稱Oberwolfach Seminars
圖書封面Titlebook: Moduli Spaces of Riemannian Metrics;  Wilderich Tuschmann,David J. Wraith Textbook 2015 Springer Basel 2015 Riemannian metrics.curvature.ma
描述This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.
出版日期Textbook 2015
關(guān)鍵詞Riemannian metrics; curvature; manifolds; moduli spaces; topology
版次1
doihttps://doi.org/10.1007/978-3-0348-0948-1
isbn_softcover978-3-0348-0947-4
isbn_ebook978-3-0348-0948-1Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightSpringer Basel 2015
The information of publication is updating

書目名稱Moduli Spaces of Riemannian Metrics影響因子(影響力)




書目名稱Moduli Spaces of Riemannian Metrics影響因子(影響力)學(xué)科排名




書目名稱Moduli Spaces of Riemannian Metrics網(wǎng)絡(luò)公開度




書目名稱Moduli Spaces of Riemannian Metrics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Moduli Spaces of Riemannian Metrics被引頻次




書目名稱Moduli Spaces of Riemannian Metrics被引頻次學(xué)科排名




書目名稱Moduli Spaces of Riemannian Metrics年度引用




書目名稱Moduli Spaces of Riemannian Metrics年度引用學(xué)科排名




書目名稱Moduli Spaces of Riemannian Metrics讀者反饋




書目名稱Moduli Spaces of Riemannian Metrics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:04:12 | 只看該作者
Wilderich Tuschmann,David J. WraithFirst book dealing exclusively with this topic which has hitherto only been treated in original research papers.Develops relevant background and explains the ideas involved.Short, concise text with to
板凳
發(fā)表于 2025-3-22 01:29:42 | 只看該作者
地板
發(fā)表于 2025-3-22 05:24:21 | 只看該作者
5#
發(fā)表于 2025-3-22 12:09:08 | 只看該作者
1661-237X and explains the ideas involved.Short, concise text with toThis book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative
6#
發(fā)表于 2025-3-22 14:09:04 | 只看該作者
7#
發(fā)表于 2025-3-22 17:50:08 | 只看該作者
Textbook 2015ture conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a
8#
發(fā)表于 2025-3-23 00:46:32 | 只看該作者
9#
發(fā)表于 2025-3-23 04:12:44 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:59:22 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双桥区| 岱山县| 习水县| 黔西县| 涡阳县| 合川市| 麻城市| 留坝县| 苏尼特左旗| 湘西| 中江县| 铜梁县| 龙川县| 攀枝花市| 修文县| 开化县| 藁城市| 三原县| 中江县| 阳泉市| 手游| 红原县| 安丘市| 海兴县| 通道| 伊金霍洛旗| 余庆县| 城步| 淮滨县| 北辰区| 安徽省| 彝良县| 临清市| 乌兰县| 金溪县| 桐柏县| 麻江县| 澳门| 延边| 禄劝| 鞍山市|