找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Modular Forms and Fermat’s Last Theorem; Gary Cornell,Joseph H. Silverman,Glenn Stevens Book 1997 Springer-Verlag New York, Inc. 1997 arit

[復制鏈接]
查看: 22127|回復: 35
樓主
發(fā)表于 2025-3-21 20:00:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Modular Forms and Fermat’s Last Theorem
編輯Gary Cornell,Joseph H. Silverman,Glenn Stevens
視頻videohttp://file.papertrans.cn/638/637864/637864.mp4
圖書封面Titlebook: Modular Forms and Fermat’s Last Theorem;  Gary Cornell,Joseph H. Silverman,Glenn Stevens Book 1997 Springer-Verlag New York, Inc. 1997 arit
描述This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. Contributor‘s includeThe purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi-stable) elliptic curve over Q is modular, and to explain how Wiles‘ result can be combined with Ribet‘s theorem and ideas of Frey and Serre to show, at long last, that Fermat‘s Last Theorem is true. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles‘ proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre‘s conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles‘ proof. In recognition of the historical significa
出版日期Book 1997
關鍵詞arithmetic; deformation theory; elliptic curve; number theory
版次1
doihttps://doi.org/10.1007/978-1-4612-1974-3
isbn_softcover978-0-387-98998-3
isbn_ebook978-1-4612-1974-3
copyrightSpringer-Verlag New York, Inc. 1997
The information of publication is updating

書目名稱Modular Forms and Fermat’s Last Theorem影響因子(影響力)




書目名稱Modular Forms and Fermat’s Last Theorem影響因子(影響力)學科排名




書目名稱Modular Forms and Fermat’s Last Theorem網(wǎng)絡公開度




書目名稱Modular Forms and Fermat’s Last Theorem網(wǎng)絡公開度學科排名




書目名稱Modular Forms and Fermat’s Last Theorem被引頻次




書目名稱Modular Forms and Fermat’s Last Theorem被引頻次學科排名




書目名稱Modular Forms and Fermat’s Last Theorem年度引用




書目名稱Modular Forms and Fermat’s Last Theorem年度引用學科排名




書目名稱Modular Forms and Fermat’s Last Theorem讀者反饋




書目名稱Modular Forms and Fermat’s Last Theorem讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:44:30 | 只看該作者
https://doi.org/10.1007/978-1-4612-1974-3arithmetic; deformation theory; elliptic curve; number theory
板凳
發(fā)表于 2025-3-22 02:37:13 | 只看該作者
地板
發(fā)表于 2025-3-22 07:02:39 | 只看該作者
9 through 18, 1995 at Boston University. Contributor‘s includeThe purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi-stable) elliptic curve over Q is modular, and to explain how Wiles‘ result can be comb
5#
發(fā)表于 2025-3-22 11:32:51 | 只看該作者
6#
發(fā)表于 2025-3-22 16:08:57 | 只看該作者
7#
發(fā)表于 2025-3-22 20:47:59 | 只看該作者
8#
發(fā)表于 2025-3-22 22:20:10 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:59:57 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:45:11 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
嘉定区| 邵东县| 五华县| 辉县市| 和政县| 六安市| 芜湖县| 明水县| 屏东县| 台东市| 项城市| 海城市| 平凉市| 清镇市| 寿光市| 鄂伦春自治旗| 台湾省| 扎囊县| 清新县| 凉城县| 隆昌县| 社旗县| 乐东| 革吉县| 晋州市| 富裕县| 临桂县| 吉首市| 湾仔区| 靖江市| 靖安县| 高安市| 历史| 客服| 望奎县| 容城县| 富民县| 宁南县| 云浮市| 苏尼特左旗| 曲沃县|