找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Modern Approaches in IoT and Machine Learning for Cyber Security; Latest Trends in AI Vinit Kumar Gunjan,Mohd Dilshad Ansari,ThiDieuLinh Bo

[復(fù)制鏈接]
查看: 45747|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:44:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security
副標(biāo)題Latest Trends in AI
編輯Vinit Kumar Gunjan,Mohd Dilshad Ansari,ThiDieuLinh
視頻videohttp://file.papertrans.cn/637/636927/636927.mp4
概述Examines cyber risks associated with IoT and highlights essential cyber security.Fuses deep cyber security expertise with artificial intelligence, machine learning and advanced analytics tools.Include
叢書(shū)名稱Internet of Things
圖書(shū)封面Titlebook: Modern Approaches in IoT and Machine Learning for Cyber Security; Latest Trends in AI Vinit Kumar Gunjan,Mohd Dilshad Ansari,ThiDieuLinh Bo
描述.This book examines the cyber risks associated with Internet of Things (IoT) and highlights the cyber security capabilities that IoT platforms must have in order to address those cyber risks effectively. The chapters fuse together deep cyber security expertise with artificial intelligence (AI), machine learning, and advanced analytics tools, which allows readers to evaluate, emulate, outpace, and eliminate threats in real time. The book’s chapters are written by experts of IoT and machine learning to help examine the computer-based crimes of the next decade. They highlight on automated processes for analyzing cyber frauds in the current systems and predict what is on the horizon. This book is applicable for researchers and professionals in cyber security, AI, and IoT..
出版日期Book 2024
關(guān)鍵詞Cyber security; Cyber Crime; Internet of Things; Machine Learning; Artificial Intelligence; Neural Networ
版次1
doihttps://doi.org/10.1007/978-3-031-09955-7
isbn_softcover978-3-031-09957-1
isbn_ebook978-3-031-09955-7Series ISSN 2199-1073 Series E-ISSN 2199-1081
issn_series 2199-1073
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security影響因子(影響力)




書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security影響因子(影響力)學(xué)科排名




書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security被引頻次




書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security被引頻次學(xué)科排名




書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security年度引用




書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security年度引用學(xué)科排名




書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security讀者反饋




書(shū)目名稱Modern Approaches in IoT and Machine Learning for Cyber Security讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:21:43 | 只看該作者
https://doi.org/10.1007/978-3-031-09955-7Cyber security; Cyber Crime; Internet of Things; Machine Learning; Artificial Intelligence; Neural Networ
板凳
發(fā)表于 2025-3-22 04:25:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:26:50 | 只看該作者
5#
發(fā)表于 2025-3-22 08:57:31 | 只看該作者
6#
發(fā)表于 2025-3-22 16:31:14 | 只看該作者
7#
發(fā)表于 2025-3-22 20:09:58 | 只看該作者
8#
發(fā)表于 2025-3-23 00:17:49 | 只看該作者
Book 2024s are written by experts of IoT and machine learning to help examine the computer-based crimes of the next decade. They highlight on automated processes for analyzing cyber frauds in the current systems and predict what is on the horizon. This book is applicable for researchers and professionals in cyber security, AI, and IoT..
9#
發(fā)表于 2025-3-23 03:23:47 | 只看該作者
10#
發(fā)表于 2025-3-23 07:05:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临猗县| 乌拉特中旗| 云林县| 茌平县| 清丰县| 广平县| 云霄县| 万全县| 安平县| 夏邑县| 万宁市| 太康县| 宁化县| 高碑店市| 鄂托克前旗| 遂宁市| 酉阳| 海晏县| 桃江县| 宁河县| 博罗县| 西青区| 微山县| 凤台县| 永州市| 新龙县| 中牟县| 荣昌县| 太保市| 游戏| 延寿县| 旌德县| 增城市| 边坝县| 汉沽区| 西乡县| 固原市| 景宁| 克拉玛依市| 中江县| 自贡市|