找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Modern Algorithms of Cluster Analysis; Slawomir‘Wierzchoń,Mieczyslaw K?opotek Book 2018 Springer International Publishing AG 2018 Cluster

[復(fù)制鏈接]
查看: 53725|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:37:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Modern Algorithms of Cluster Analysis
編輯Slawomir‘Wierzchoń,Mieczyslaw K?opotek
視頻videohttp://file.papertrans.cn/637/636903/636903.mp4
概述Provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, and cluster analysis.Presents a number of approaches to handling a large number of objects
叢書名稱Studies in Big Data
圖書封面Titlebook: Modern Algorithms of Cluster Analysis;  Slawomir‘Wierzchoń,Mieczyslaw K?opotek Book 2018 Springer International Publishing AG 2018 Cluster
描述.This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc..?.The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem..?.Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented..?.In addition, the book provides an overview of approaches to handling large collec
出版日期Book 2018
關(guān)鍵詞Cluster Analysis; Big Data; Data Sets; Spectral Clustering; Combinatorial Cluster Analysis
版次1
doihttps://doi.org/10.1007/978-3-319-69308-8
isbn_softcover978-3-319-88752-4
isbn_ebook978-3-319-69308-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書目名稱Modern Algorithms of Cluster Analysis影響因子(影響力)




書目名稱Modern Algorithms of Cluster Analysis影響因子(影響力)學(xué)科排名




書目名稱Modern Algorithms of Cluster Analysis網(wǎng)絡(luò)公開度




書目名稱Modern Algorithms of Cluster Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Modern Algorithms of Cluster Analysis被引頻次




書目名稱Modern Algorithms of Cluster Analysis被引頻次學(xué)科排名




書目名稱Modern Algorithms of Cluster Analysis年度引用




書目名稱Modern Algorithms of Cluster Analysis年度引用學(xué)科排名




書目名稱Modern Algorithms of Cluster Analysis讀者反饋




書目名稱Modern Algorithms of Cluster Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:56 | 只看該作者
Book 2018ok explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to pre
板凳
發(fā)表于 2025-3-22 00:47:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:46 | 只看該作者
5#
發(fā)表于 2025-3-22 09:12:45 | 只看該作者
978-3-319-88752-4Springer International Publishing AG 2018
6#
發(fā)表于 2025-3-22 13:33:59 | 只看該作者
Modern Algorithms of Cluster Analysis978-3-319-69308-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
7#
發(fā)表于 2025-3-22 20:03:29 | 只看該作者
Studies in Big Datahttp://image.papertrans.cn/m/image/636903.jpg
8#
發(fā)表于 2025-3-23 00:10:16 | 只看該作者
9#
發(fā)表于 2025-3-23 04:09:04 | 只看該作者
Slawomir‘Wierzchoń,Mieczyslaw K?opotekProvides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, and cluster analysis.Presents a number of approaches to handling a large number of objects
10#
發(fā)表于 2025-3-23 05:58:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤山市| 华阴市| 隆昌县| 神农架林区| 中宁县| 蕉岭县| 巨野县| 乌鲁木齐市| 白水县| 德钦县| 商水县| 泸西县| 慈溪市| 昂仁县| 佛坪县| 正定县| 婺源县| 铜鼓县| 马山县| 公安县| SHOW| 浦城县| 剑川县| 广灵县| 罗城| 新河县| 久治县| 弥勒县| 岳西县| 博野县| 镇坪县| 泌阳县| 阿拉善右旗| 泰兴市| 吴桥县| 柯坪县| 阳山县| 青河县| 鞍山市| 阜宁县| 乐昌市|