找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Models for Discrete Longitudinal Data; Geert Molenberghs,Geert Verbeke Book 2005 Springer-Verlag New York 2005 Excel.Fitting.Generalized l

[復(fù)制鏈接]
查看: 9551|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:03:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Models for Discrete Longitudinal Data
編輯Geert Molenberghs,Geert Verbeke
視頻videohttp://file.papertrans.cn/637/636766/636766.mp4
概述The authors also wrote a monograph on linear mixed models for longitudinal data (Springer, 2000) and received the American Statistical Association‘s Excellence in Continuing Education Award, based on
叢書名稱Springer Series in Statistics
圖書封面Titlebook: Models for Discrete Longitudinal Data;  Geert Molenberghs,Geert Verbeke Book 2005 Springer-Verlag New York 2005 Excel.Fitting.Generalized l
描述.This book provides a comprehensive treatment on modeling approaches for non-Gaussian repeated measures, possibly subject to incompleteness. The authors begin with models for the full marginal distribution of the outcome vector. This allows model fitting to be based on maximum likelihood principles, immediately implying inferential tools for all parameters in the models. At the same time, they formulate computationally less complex alternatives, including generalized estimating equations and pseudo-likelihood methods. They then briefly introduce conditional models and move on to the random-effects family, encompassing the beta-binomial model, the probit model and, in particular the generalized linear mixed model. Several frequently used procedures for model fitting are discussed and differences between marginal models and random-effects models are given attention...The authors consider a variety of extensions, such as models for multivariate longitudinal measurements, random-effects models with serial correlation, and mixed models with non-Gaussian random effects. They sketch the general principles for how to deal with the commonly encountered issue of incomplete longitudinal data.
出版日期Book 2005
關(guān)鍵詞Excel; Fitting; Generalized linear model; Likelihood; SAS; best fit; correlation; statistics
版次1
doihttps://doi.org/10.1007/0-387-28980-1
isbn_softcover978-1-4419-2043-0
isbn_ebook978-0-387-28980-9Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer-Verlag New York 2005
The information of publication is updating

書目名稱Models for Discrete Longitudinal Data影響因子(影響力)




書目名稱Models for Discrete Longitudinal Data影響因子(影響力)學(xué)科排名




書目名稱Models for Discrete Longitudinal Data網(wǎng)絡(luò)公開度




書目名稱Models for Discrete Longitudinal Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Models for Discrete Longitudinal Data被引頻次




書目名稱Models for Discrete Longitudinal Data被引頻次學(xué)科排名




書目名稱Models for Discrete Longitudinal Data年度引用




書目名稱Models for Discrete Longitudinal Data年度引用學(xué)科排名




書目名稱Models for Discrete Longitudinal Data讀者反饋




書目名稱Models for Discrete Longitudinal Data讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:07 | 只看該作者
978-1-4419-2043-0Springer-Verlag New York 2005
板凳
發(fā)表于 2025-3-22 01:07:32 | 只看該作者
Models for Discrete Longitudinal Data978-0-387-28980-9Series ISSN 0172-7397 Series E-ISSN 2197-568X
地板
發(fā)表于 2025-3-22 04:48:01 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:53 | 只看該作者
6#
發(fā)表于 2025-3-22 15:13:03 | 只看該作者
7#
發(fā)表于 2025-3-22 18:05:17 | 只看該作者
0172-7397 effects models with serial correlation, and mixed models with non-Gaussian random effects. They sketch the general principles for how to deal with the commonly encountered issue of incomplete longitudinal data.978-1-4419-2043-0978-0-387-28980-9Series ISSN 0172-7397 Series E-ISSN 2197-568X
8#
發(fā)表于 2025-3-22 22:03:25 | 只看該作者
9#
發(fā)表于 2025-3-23 02:45:20 | 只看該作者
Book 2005rs begin with models for the full marginal distribution of the outcome vector. This allows model fitting to be based on maximum likelihood principles, immediately implying inferential tools for all parameters in the models. At the same time, they formulate computationally less complex alternatives,
10#
發(fā)表于 2025-3-23 08:33:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永登县| 汝城县| 邢台县| 炎陵县| 平塘县| 斗六市| 喀喇沁旗| 县级市| 冷水江市| 团风县| 贵南县| 红安县| 城步| 芦溪县| 铁力市| 宕昌县| 富阳市| 兴业县| 美姑县| 洛川县| 临夏县| 乐业县| 连云港市| 章丘市| 株洲市| 东明县| 宁明县| 东安县| 余姚市| 曲阳县| 元朗区| 桃园市| 丹江口市| 定南县| 大港区| 波密县| 桐庐县| 乐山市| 松溪县| 和政县| 赤城县|