找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Modeling and Stochastic Learning for Forecasting in High Dimensions; Anestis Antoniadis,Jean-Michel Poggi,Xavier Brossa Conference proceed

[復(fù)制鏈接]
查看: 43404|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:49:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions
編輯Anestis Antoniadis,Jean-Michel Poggi,Xavier Brossa
視頻videohttp://file.papertrans.cn/637/636196/636196.mp4
概述Presents contributions from the International Workshop on Industry Practices for Forecasting (June 5-7, 2013, Paris, France).Shows latest developments in forecasting and time series prediction.Include
叢書名稱Lecture Notes in Statistics
圖書封面Titlebook: Modeling and Stochastic Learning for Forecasting in High Dimensions;  Anestis Antoniadis,Jean-Michel Poggi,Xavier Brossa Conference proceed
描述The chapters in this volume stress the need for advances in theoretical understanding to go hand-in-hand with the widespread practical application of forecasting in industry. Forecasting and time series prediction have enjoyed considerable attention over the last few decades, fostered by impressive advances in observational capabilities and measurement procedures. On June 5-7, 2013, an international Workshop on Industry Practices for Forecasting was held in Paris, France, organized and supported by the OSIRIS Department of Electricité de France Research and Development Division. In keeping with tradition, both theoretical statistical results and practical contributions on this active field of statistical research and on forecasting issues in a rapidly evolving industrial environment are presented. The volume reflects the broad spectrum of the conference, including 16 articles contributed by specialists in various areas. The material compiled is broad in scope and ranges from new findings on forecasting in industry and in time series, on nonparametric and functional methods and on on-line machine learning for forecasting, to the latest developments in tools for high dimension and co
出版日期Conference proceedings 2015
關(guān)鍵詞Copulas; forecasting; high dimensional statistics; multiscale processes; time series
版次1
doihttps://doi.org/10.1007/978-3-319-18732-7
isbn_softcover978-3-319-18731-0
isbn_ebook978-3-319-18732-7Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions影響因子(影響力)




書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions影響因子(影響力)學(xué)科排名




書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions網(wǎng)絡(luò)公開度




書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions被引頻次




書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions被引頻次學(xué)科排名




書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions年度引用




書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions年度引用學(xué)科排名




書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions讀者反饋




書目名稱Modeling and Stochastic Learning for Forecasting in High Dimensions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:48:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:35:18 | 只看該作者
Anestis Antoniadis,Jean-Michel Poggi,Xavier BrossaPresents contributions from the International Workshop on Industry Practices for Forecasting (June 5-7, 2013, Paris, France).Shows latest developments in forecasting and time series prediction.Include
地板
發(fā)表于 2025-3-22 07:48:20 | 只看該作者
5#
發(fā)表于 2025-3-22 12:41:14 | 只看該作者
6#
發(fā)表于 2025-3-22 13:34:38 | 只看該作者
Conference proceedings 2015 by specialists in various areas. The material compiled is broad in scope and ranges from new findings on forecasting in industry and in time series, on nonparametric and functional methods and on on-line machine learning for forecasting, to the latest developments in tools for high dimension and co
7#
發(fā)表于 2025-3-22 19:00:17 | 只看該作者
Modeling and Stochastic Learning for Forecasting in High Dimensions
8#
發(fā)表于 2025-3-22 21:40:32 | 只看該作者
0930-0325 new findings on forecasting in industry and in time series, on nonparametric and functional methods and on on-line machine learning for forecasting, to the latest developments in tools for high dimension and co978-3-319-18731-0978-3-319-18732-7Series ISSN 0930-0325 Series E-ISSN 2197-7186
9#
發(fā)表于 2025-3-23 05:13:59 | 只看該作者
10#
發(fā)表于 2025-3-23 07:40:03 | 只看該作者
0930-0325 velopments in forecasting and time series prediction.IncludeThe chapters in this volume stress the need for advances in theoretical understanding to go hand-in-hand with the widespread practical application of forecasting in industry. Forecasting and time series prediction have enjoyed considerable
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
哈尔滨市| 永泰县| 万安县| 奈曼旗| 宜黄县| 金门县| 静安区| 通海县| 阳城县| 都昌县| 镇康县| 新密市| 德保县| 奇台县| 姚安县| 星座| 淄博市| 景谷| 绥宁县| 茂名市| 开远市| 邯郸县| 太湖县| 山丹县| 三江| 吉林省| 左贡县| 荣昌县| 石阡县| 建宁县| 达日县| 濮阳市| 武清区| 朝阳市| 苗栗市| 威信县| 商都县| 金堂县| 德清县| 安康市| 祁阳县|