找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Modeling Information Diffusion in Online Social Networks with Partial Differential Equations; Haiyan Wang,Feng Wang,Kuai Xu Book 2020 Spri

[復(fù)制鏈接]
查看: 51945|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:06:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations
編輯Haiyan Wang,Feng Wang,Kuai Xu
視頻videohttp://file.papertrans.cn/637/636014/636014.mp4
概述Provides a new and timely modeling approach for information diffusion in social media.Written by the experts who initiated the approach of modeling with partial differential equations (PDEs).Accessibl
叢書名稱Surveys and Tutorials in the Applied Mathematical Sciences
圖書封面Titlebook: Modeling Information Diffusion in Online Social Networks with Partial Differential Equations;  Haiyan Wang,Feng Wang,Kuai Xu Book 2020 Spri
描述The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling probl
出版日期Book 2020
關(guān)鍵詞Information Diffusion; Online Social Networks; Partial Differential Equations; Reaction-Diffusion Equat
版次1
doihttps://doi.org/10.1007/978-3-030-38852-2
isbn_softcover978-3-030-38850-8
isbn_ebook978-3-030-38852-2Series ISSN 2199-4765 Series E-ISSN 2199-4773
issn_series 2199-4765
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations影響因子(影響力)




書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations網(wǎng)絡(luò)公開度




書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations被引頻次




書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations被引頻次學(xué)科排名




書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations年度引用




書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations年度引用學(xué)科排名




書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations讀者反饋




書目名稱Modeling Information Diffusion in Online Social Networks with Partial Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:27 | 只看該作者
Book 2020o the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Eucl
板凳
發(fā)表于 2025-3-22 01:05:13 | 只看該作者
Modeling Information Diffusion in Online Social Networks with Partial Differential Equations
地板
發(fā)表于 2025-3-22 06:20:52 | 只看該作者
Book 2020bing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling probl
5#
發(fā)表于 2025-3-22 10:12:54 | 只看該作者
6#
發(fā)表于 2025-3-22 16:36:50 | 只看該作者
7#
發(fā)表于 2025-3-22 18:09:05 | 只看該作者
Modeling Information Diffusion in Online Social Networks with Partial Differential Equations978-3-030-38852-2Series ISSN 2199-4765 Series E-ISSN 2199-4773
8#
發(fā)表于 2025-3-23 00:24:25 | 只看該作者
9#
發(fā)表于 2025-3-23 03:49:10 | 只看該作者
https://doi.org/10.1007/978-3-030-38852-2Information Diffusion; Online Social Networks; Partial Differential Equations; Reaction-Diffusion Equat
10#
發(fā)表于 2025-3-23 09:06:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 00:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福建省| 宁蒗| 江津市| 保靖县| 拉萨市| 湛江市| 通许县| 肃宁县| 广宁县| 朝阳区| 浏阳市| 昌黎县| 汝阳县| 青阳县| 汤原县| 固阳县| 灌云县| 鹤庆县| 昭平县| 邵阳市| 绥滨县| 锦州市| 个旧市| 双柏县| 隆化县| 沙雅县| 博白县| 湟源县| 白玉县| 阿克苏市| 盐边县| 潞城市| 平远县| 日喀则市| 吉林市| 肥东县| 靖边县| 巴彦县| 新巴尔虎左旗| 仪陇县| 成武县|