找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Model Selection and Error Estimation in a Nutshell; Luca Oneto Book 2020 Springer Nature Switzerland AG 2020 Statistical Learning Theory.E

[復(fù)制鏈接]
查看: 42910|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:21:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell
編輯Luca Oneto
視頻videohttp://file.papertrans.cn/636/635797/635797.mp4
概述Reviews the main approaches to problems of model selection and error estimation.Simplifies most of the technical aspects focusing on the applicability of the approaches.Presents the intuitions behind
叢書(shū)名稱(chēng)Modeling and Optimization in Science and Technologies
圖書(shū)封面Titlebook: Model Selection and Error Estimation in a Nutshell;  Luca Oneto Book 2020 Springer Nature Switzerland AG 2020 Statistical Learning Theory.E
描述.How can we select the best performing data-driven model? How can we rigorously estimate its generalization error? Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80’s and includes the most recent results. It discusses open problems and outlines future directions for research..
出版日期Book 2020
關(guān)鍵詞Statistical Learning Theory; Empirical Data; Model Selection; Error Estimation; Resampling Methods; Compl
版次1
doihttps://doi.org/10.1007/978-3-030-24359-3
isbn_softcover978-3-030-24361-6
isbn_ebook978-3-030-24359-3Series ISSN 2196-7326 Series E-ISSN 2196-7334
issn_series 2196-7326
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell影響因子(影響力)




書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell被引頻次




書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell被引頻次學(xué)科排名




書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell年度引用




書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell年度引用學(xué)科排名




書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell讀者反饋




書(shū)目名稱(chēng)Model Selection and Error Estimation in a Nutshell讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:07 | 只看該作者
Model Selection and Error Estimation in a Nutshell
板凳
發(fā)表于 2025-3-22 01:40:44 | 只看該作者
Book 2020tatistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80’s and includes the most recent results. It discusses open problems and outlines future directions for research..
地板
發(fā)表于 2025-3-22 05:21:38 | 只看該作者
Book 2020 these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only
5#
發(fā)表于 2025-3-22 10:16:03 | 只看該作者
6#
發(fā)表于 2025-3-22 16:23:21 | 只看該作者
7#
發(fā)表于 2025-3-22 18:23:41 | 只看該作者
8#
發(fā)表于 2025-3-22 23:49:15 | 只看該作者
Model Selection and Error Estimation in a Nutshell978-3-030-24359-3Series ISSN 2196-7326 Series E-ISSN 2196-7334
9#
發(fā)表于 2025-3-23 02:12:49 | 只看該作者
10#
發(fā)表于 2025-3-23 09:05:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂川县| 海门市| 双牌县| 永福县| 青浦区| 星座| 怀集县| 定襄县| 章丘市| 岳普湖县| 清原| 沛县| 分宜县| 上林县| 京山县| 漳浦县| 建德市| 杭锦后旗| 东明县| 龙州县| 时尚| 汉源县| 崇州市| 文水县| 桂东县| 如皋市| 潜江市| 九台市| 炉霍县| 阿鲁科尔沁旗| 甘德县| 沭阳县| 昆明市| 平凉市| 沿河| 交口县| 阿图什市| 南开区| 邯郸县| SHOW| 仪陇县|