找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mod Two Homology and Cohomology; Jean-Claude Hausmann Textbook 2014 Springer International Publishing Switzerland 2014 Algebraic Topology.

[復(fù)制鏈接]
查看: 49935|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:40:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mod Two Homology and Cohomology
編輯Jean-Claude Hausmann
視頻videohttp://file.papertrans.cn/636/635688/635688.mp4
概述Presents a simplified version of these important tools of algebraic topology.Provides a self-contained introduction to mod 2 (co)homology.Begins with basic principles and leads up to advanced topics t
叢書名稱Universitext
圖書封面Titlebook: Mod Two Homology and Cohomology;  Jean-Claude Hausmann Textbook 2014 Springer International Publishing Switzerland 2014 Algebraic Topology.
描述.Cohomology and homology modulo 2 helps the reader grasp more readily the basics of a major tool in algebraic topology. Compared to a more general approach to (co)homology this refreshing approach has many pedagogical advantages:.1. It leads more quickly to the essentials of the subject,.2. An absence of signs and orientation considerations simplifies the theory,.3. Computations and advanced applications can be presented at an earlier stage, .4. Simple geometrical interpretations of (co)chains..Mod 2 (co)homology was developed in the first quarter of the twentieth century as an alternative to integral homology, before both became particular cases of (co)homology with arbitrary coefficients..The first chapters of this book may serve as a basis for a graduate-level introductory course to (co)homology. Simplicial and singular mod 2 (co)homology are introduced, with their products and Steenrod squares, as well as equivariant cohomology. Classical applications include Brouwer‘s fixed point theorem, Poincaré duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the
出版日期Textbook 2014
關(guān)鍵詞Algebraic Topology; Cohomology; Homology
版次1
doihttps://doi.org/10.1007/978-3-319-09354-3
isbn_softcover978-3-319-09353-6
isbn_ebook978-3-319-09354-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Mod Two Homology and Cohomology影響因子(影響力)




書目名稱Mod Two Homology and Cohomology影響因子(影響力)學(xué)科排名




書目名稱Mod Two Homology and Cohomology網(wǎng)絡(luò)公開度




書目名稱Mod Two Homology and Cohomology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mod Two Homology and Cohomology被引頻次




書目名稱Mod Two Homology and Cohomology被引頻次學(xué)科排名




書目名稱Mod Two Homology and Cohomology年度引用




書目名稱Mod Two Homology and Cohomology年度引用學(xué)科排名




書目名稱Mod Two Homology and Cohomology讀者反饋




書目名稱Mod Two Homology and Cohomology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:11:23 | 只看該作者
地板
發(fā)表于 2025-3-22 08:09:03 | 只看該作者
https://doi.org/10.1007/978-3-319-09354-3Algebraic Topology; Cohomology; Homology
5#
發(fā)表于 2025-3-22 09:45:43 | 只看該作者
Jean-Claude HausmannPresents a simplified version of these important tools of algebraic topology.Provides a self-contained introduction to mod 2 (co)homology.Begins with basic principles and leads up to advanced topics t
6#
發(fā)表于 2025-3-22 15:05:46 | 只看該作者
Textbook 2014od squares, as well as equivariant cohomology. Classical applications include Brouwer‘s fixed point theorem, Poincaré duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the
7#
發(fā)表于 2025-3-22 20:55:16 | 只看該作者
0172-5939 xed point theorem, Poincaré duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the978-3-319-09353-6978-3-319-09354-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
8#
發(fā)表于 2025-3-22 21:42:36 | 只看該作者
9#
發(fā)表于 2025-3-23 04:55:22 | 只看該作者
10#
發(fā)表于 2025-3-23 08:05:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 03:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰浩特市| 清河县| 登封市| 建阳市| 仪陇县| 甘泉县| 大悟县| 辽源市| 周宁县| 泽普县| 屯昌县| 山阴县| 金堂县| 稷山县| 盈江县| 徐州市| 望谟县| 佳木斯市| 赞皇县| 西盟| 漳州市| 东莞市| 县级市| 榆社县| 新营市| 凤城市| 深水埗区| 天台县| 隆子县| 汉中市| 莎车县| 兰州市| 柯坪县| 改则县| 莎车县| 丰都县| 泸水县| 永州市| 铜梁县| 于都县| 侯马市|