找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mining Sequential Patterns from Large Data Sets; Wei Wang,Jiong Yang Book 2005 Springer-Verlag US 2005 Mathematica.algorithms.bioinformati

[復(fù)制鏈接]
查看: 43481|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:38:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Mining Sequential Patterns from Large Data Sets
編輯Wei Wang,Jiong Yang
視頻videohttp://file.papertrans.cn/635/634666/634666.mp4
概述Contains unique multiple models for various sequential patterns and detailed algorithms on how to mine these patterns..Bio-informaticians not yet familiar with data mining models and algorithms will a
叢書名稱Advances in Database Systems
圖書封面Titlebook: Mining Sequential Patterns from Large Data Sets;  Wei Wang,Jiong Yang Book 2005 Springer-Verlag US 2005 Mathematica.algorithms.bioinformati
描述In many applications, e.g., bioinformatics, web access traces, system u- lization logs, etc., the data is naturally in the form of sequences. It has been of great interests to analyze the sequential data to find their inherent char- teristics. The sequential pattern is one of the most widely studied models to capture such characteristics. Examples of sequential patterns include but are not limited to protein sequence motifs and web page navigation traces. In this book, we focus on sequential pattern mining. To meet different needs of various applications, several models of sequential patterns have been proposed. We do not only study the mathematical definitions and application domains of these models, but also the algorithms on how to effectively and efficiently find these patterns. The objective of this book is to provide computer scientists and domain - perts such as life scientists with a set of tools in analyzing and understanding the nature of various sequences by : (1) identifying the specific model(s) of - quential patterns that are most suitable, and (2) providing an efficient algorithm for mining these patterns. Chapter 1 INTRODUCTION Data Mining is the process of extracti
出版日期Book 2005
關(guān)鍵詞Mathematica; algorithms; bioinformatics; computer science; navigation; data structures
版次1
doihttps://doi.org/10.1007/b104937
isbn_softcover978-1-4419-3707-0
isbn_ebook978-0-387-24247-7Series ISSN 1386-2944
issn_series 1386-2944
copyrightSpringer-Verlag US 2005
The information of publication is updating

書目名稱Mining Sequential Patterns from Large Data Sets影響因子(影響力)




書目名稱Mining Sequential Patterns from Large Data Sets影響因子(影響力)學(xué)科排名




書目名稱Mining Sequential Patterns from Large Data Sets網(wǎng)絡(luò)公開度




書目名稱Mining Sequential Patterns from Large Data Sets網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mining Sequential Patterns from Large Data Sets被引頻次




書目名稱Mining Sequential Patterns from Large Data Sets被引頻次學(xué)科排名




書目名稱Mining Sequential Patterns from Large Data Sets年度引用




書目名稱Mining Sequential Patterns from Large Data Sets年度引用學(xué)科排名




書目名稱Mining Sequential Patterns from Large Data Sets讀者反饋




書目名稱Mining Sequential Patterns from Large Data Sets讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:59 | 只看該作者
Mining Sequential Patterns from Large Data Sets978-0-387-24247-7Series ISSN 1386-2944
板凳
發(fā)表于 2025-3-22 02:14:12 | 只看該作者
地板
發(fā)表于 2025-3-22 06:02:27 | 只看該作者
5#
發(fā)表于 2025-3-22 08:47:38 | 只看該作者
6#
發(fā)表于 2025-3-22 14:06:45 | 只看該作者
Book 2005th a set of tools in analyzing and understanding the nature of various sequences by : (1) identifying the specific model(s) of - quential patterns that are most suitable, and (2) providing an efficient algorithm for mining these patterns. Chapter 1 INTRODUCTION Data Mining is the process of extracti
7#
發(fā)表于 2025-3-22 20:57:25 | 只看該作者
8#
發(fā)表于 2025-3-22 23:40:16 | 只看該作者
1386-2944 t yet familiar with data mining models and algorithms will aIn many applications, e.g., bioinformatics, web access traces, system u- lization logs, etc., the data is naturally in the form of sequences. It has been of great interests to analyze the sequential data to find their inherent char- teristi
9#
發(fā)表于 2025-3-23 03:27:34 | 只看該作者
10#
發(fā)表于 2025-3-23 08:17:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄江县| 稷山县| 辽阳市| 永安市| 辛集市| 庆阳市| 略阳县| 邮箱| 南城县| 房山区| 宝鸡市| 广德县| 周至县| 夏邑县| 苗栗县| 巴彦淖尔市| 三江| 闻喜县| 惠东县| 武安市| 宜黄县| 平度市| 怀仁县| 法库县| 库尔勒市| 鹰潭市| 榕江县| 宣化县| 长沙市| 和林格尔县| 景洪市| 丰台区| 芦山县| 大邑县| 象山县| 富裕县| 舒兰市| 安新县| 灵寿县| 花垣县| 永新县|