找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Microscale and Nanoscale Heat Transfer; Sebastian Volz Book 2007 Springer-Verlag Berlin Heidelberg 2007 Condensed matter.Nanoscience.Trans

[復(fù)制鏈接]
樓主: 存貨清單
11#
發(fā)表于 2025-3-23 11:06:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:35:21 | 只看該作者
13#
發(fā)表于 2025-3-23 18:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 00:34:02 | 只看該作者
Transport in Dilute Media,ain an expression for the thermal conductivity of a gas. We then turn to non-LTE regimes and in particular the ballistic transport regime which arises when the characteristic size of the system is smaller than the mean free path (or the observation time is shorter than the average time elapsed betwe
15#
發(fā)表于 2025-3-24 06:17:14 | 只看該作者
Electrons and Phonons,e have seen, this notion can only be defined for length and time scales greater than the mean free path and the average time between consecutive collisions, respectively..In this Chapter, we explain how to transpose this kinetic approach. to the case of electrons and phonons. The first step is to de
16#
發(fā)表于 2025-3-24 09:37:13 | 只看該作者
Introduction to Radiative Transfer, describe the various transport regimes (ballistic, multiple scattering and diffusive) and stress the analogy between this situation and the problem of heat conduction..In the second part (Sect.?4), we treat the case of systems with characteristic sizes less than the wavelength and the coherence len
17#
發(fā)表于 2025-3-24 11:45:21 | 只看該作者
Solution of the Boltzmann Equationfor Phonon Transport,the internal energy and flux are evaluated using quadrature formulas. Whereas the partial differential equation derived in the . .?approach can be solved by standard methods, the numerical system associated with the discrete ordinate method is more specific, particularly in cylindrical geometries.
18#
發(fā)表于 2025-3-24 15:50:38 | 只看該作者
19#
發(fā)表于 2025-3-24 22:53:23 | 只看該作者
20#
發(fā)表于 2025-3-25 01:41:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂平市| 五峰| 广昌县| 鹤庆县| 合川市| 涪陵区| 正镶白旗| 曲松县| 察雅县| 宜黄县| 东阿县| 固原市| 河津市| 德钦县| 奈曼旗| 五常市| 五原县| 汤原县| 大洼县| 顺昌县| 汤阴县| 老河口市| 应城市| 江门市| 罗山县| 龙岩市| 丰台区| 平谷区| 含山县| 棋牌| 刚察县| 兴海县| 绥芬河市| 乡宁县| 丹江口市| 本溪市| 长宁县| 宁德市| 岑巩县| 开化县| 湖南省|