找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Microlocal Analysis and Precise Spectral Asymptotics; Victor Ivrii Book 1998 Springer-Verlag Berlin Heidelberg 1998 Dirac.Microlocal analy

[復(fù)制鏈接]
樓主: 果園
31#
發(fā)表于 2025-3-27 00:02:24 | 只看該作者
32#
發(fā)表于 2025-3-27 03:12:51 | 只看該作者
Local Spectral Asymptotics for the Dirac Operator with Strong Magnetic Fieldr to those of the previous chapter: sections 7.1–7.4 and sections 7.6–7.8 correspond to sections 6.1–6.4 and sections 6.5–6.7 respectively. However, there appears a new section 7.5 devoted to the case of a very strong magnetic field. Namely, the condition . ≤ const is not natural for the Dirac opera
33#
發(fā)表于 2025-3-27 06:26:43 | 只看該作者
Estimates of the Negative Spectrumupper estimates for .. (.)) in order to derive upper and lower estimates for .. (.) = .(?∞, .) where .. (.) is the number of negative eigenvalues of the self-adjoint operator . (counting their multiplicities), provided (?∞, 0) does not intersect the essential spectrum of A and N. (.) = ∞ otherwise.
34#
發(fā)表于 2025-3-27 09:32:59 | 只看該作者
35#
發(fā)表于 2025-3-27 14:26:26 | 只看該作者
Weylian Asymptotics of Spectramptotics. In sections 10.2–10.4 we consider asymptotics of eigenvalues tending to infinity: in section 10.2 the domain is bounded “in principal” (i.e., exits to infinity are thin enough) and the coefficients are weakly singular; in section 10.3 the coefficients are strongly singular and the coercivi
36#
發(fā)表于 2025-3-27 19:15:39 | 只看該作者
Asymptotics of the Spectra of Schr?dinger and Dirac Operators with Strong Magnetic Fieldagnetic field is important. We saw in Chapters 6 and 7 that these four operators are essentially different. Moreover, it is convenient to separate the case of constant spectral parameter τ from the case in which τ tends to some specific limit τ* in a given situation. Therefore this chapter is divide
37#
發(fā)表于 2025-3-28 01:27:59 | 只看該作者
Miscellaneous Asymptotics section 12.1 I treat operators in domains with “thick” cusps, in section 12.2 I consider operators with potentials degenerate at infinity (such as the Schr?dinger operator with a positively homogeneous potential .. ≥ 0 with thick cusp {.. ≤ .} for any fixed . > 0); section 12.3 is devoted to maxima
38#
發(fā)表于 2025-3-28 03:27:23 | 只看該作者
Victor Ivriiom local governments, public institutions, researchers, and Assembling papers originally presented at the Resilient Cities 2011 Congress in Bonn, Germany (June 2011), the second global forum on cities and adaptation to climate change, this volume is the second in a series resulting from this annual
39#
發(fā)表于 2025-3-28 09:04:15 | 只看該作者
40#
發(fā)表于 2025-3-28 14:11:27 | 只看該作者
Victor Ivriiom local governments, public institutions, researchers, and Assembling papers originally presented at the Resilient Cities 2011 Congress in Bonn, Germany (June 2011), the second global forum on cities and adaptation to climate change, this volume is the second in a series resulting from this annual
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉化市| 吉水县| 曲阳县| 资溪县| 岚皋县| 迭部县| 祁阳县| 上犹县| 柞水县| 岳普湖县| 青龙| 大姚县| 饶河县| 大名县| 宜兰市| 襄垣县| 郑州市| 射阳县| 晋州市| 临洮县| 宜章县| 抚州市| 深水埗区| 云南省| 资溪县| 墨竹工卡县| 招远市| 龙泉市| 龙胜| 河源市| 屯门区| 祁连县| 阳原县| 莱西市| 惠水县| 错那县| 精河县| 神池县| 黄山市| 潢川县| 高密市|