找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Microarray Bioinformatics; Verónica Bolón-Canedo,Amparo Alonso-Betanzos Book 2019 Springer Science+Business Media, LLC, part of Springer N

[復(fù)制鏈接]
樓主: deduce
31#
發(fā)表于 2025-3-27 00:41:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:44:05 | 只看該作者
Statistical Analysis of Microarray Data, analysis of microarray data can be done in different ways using different tools. In this chapter a typical workflow for analyzing microarray data using R and Bioconductor packages is presented. The workflow starts with the raw data—binary files obtained from the hybridization process—and goes throu
33#
發(fā)表于 2025-3-27 07:58:41 | 只看該作者
Feature Selection Applied to Microarray Data,usually less than 100. In the context of microarray classification, this poses a challenge for machine learning methods, which can suffer overfitting and thus degradation in their performance. A common solution is to apply a dimensionality reduction technique before classification, to reduce the num
34#
發(fā)表于 2025-3-27 10:27:51 | 只看該作者
Cluster Analysis of Microarray Data,phenomena have revived a great interest in cluster analysis due in part to the large amount of microarray data. Traditional clustering algorithms show, apart from the need of user-defined parameters, clear limitations to handle microarray data owing to its inherent characteristics: high-dimensional-
35#
發(fā)表于 2025-3-27 14:38:47 | 只看該作者
36#
發(fā)表于 2025-3-27 18:21:55 | 只看該作者
37#
發(fā)表于 2025-3-28 01:37:33 | 只看該作者
38#
發(fā)表于 2025-3-28 02:17:18 | 只看該作者
ROC Curves for the Statistical Analysis of Microarray Data,s discrimination threshold. This chapter is an overview on the use of ROC curves for microarray data. The notion of ROC curve and its motivation is introduced in Subheading 1. Relevant scientific contributions concerning the use of ROC curves for microarray data are briefly reviewed in Subheading 2.
39#
發(fā)表于 2025-3-28 09:35:01 | 只看該作者
40#
發(fā)表于 2025-3-28 12:28:26 | 只看該作者
Computer Tools to Analyze Microarray Data,single experiment. Different kinds of microarrays are available which are identifiable by characteristics such as the type of probes, the surface used as support, and the method used for target detection. Although microarrays have been applied in many biological areas, their management, and investig
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 00:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临洮县| 灵璧县| 湘潭市| 无棣县| 裕民县| 卢龙县| 都江堰市| 冷水江市| 台南县| 奇台县| 永春县| 五华县| 清远市| 双城市| 马鞍山市| 栖霞市| 衡水市| 宁武县| 台东市| 定日县| 昂仁县| 常州市| 托克逊县| 曲阳县| 屯门区| 华蓥市| 石台县| 乐亭县| 沅江市| 临沂市| 白水县| 宝应县| 西城区| 罗江县| 阳城县| 麻栗坡县| 英德市| 星座| 信丰县| 灵寿县| 沈丘县|