找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Micro-Electronics and Telecommunication Engineering; Proceedings of 3rd I Devendra Kumar Sharma,Valentina Emilia Balas,Korha Conference pro

[復(fù)制鏈接]
樓主: 要求
21#
發(fā)表于 2025-3-25 05:02:32 | 只看該作者
Kavita Srivastava,Sudhir Kumar Sharmas...The main text is divided into three parts. In Part I, the standard time-independent and time-dependent perturbation procedures are reviewed. This includes a new section at the end of chapter 2 concerning th978-3-319-79216-3978-3-319-15386-5Series ISSN 1615-5653 Series E-ISSN 2197-6791
22#
發(fā)表于 2025-3-25 07:35:20 | 只看該作者
Wine Quality Analysis Using Machine Learning Algorithms,ess would further be escalated using KNN which makes our model dynamic. Output of this proposed model is used to determine the wines’ quality on a scale of Good, Average or Bad. This proposed model can further be applied to several other products which need quality certification. Our prediction mode
23#
發(fā)表于 2025-3-25 14:06:06 | 只看該作者
Internet Traffic Detection and Classification Using Machine Learning,ical parameters prevents invasion of packet data and preserves data privacy. Use of machine learning reduces human intervention in monitoring the Internet traffic. Classification of Internet traffic in the UNSW NB 15 data set is done using five machine learning algorithms, which are K-nearest neighb
24#
發(fā)表于 2025-3-25 16:53:18 | 只看該作者
25#
發(fā)表于 2025-3-25 21:14:13 | 只看該作者
26#
發(fā)表于 2025-3-26 03:59:22 | 只看該作者
Analysis and Implementation of IWT-SVD Scheme for Video Steganography,and results in good perceptual quality, more robustness, and less computational cost. Simulation results also show that this new scheme outperforms adaptive steganography based on IWT-SVD in term of PSNR, MSE, and concealing capacity.
27#
發(fā)表于 2025-3-26 06:39:54 | 只看該作者
Handling Sparsity in Cross-Domain Recommendation Systems: Review, especially in the presence of novel users or items, or when user drift exists. This paper reviews recent efforts made for CDRS sparsity and user drift which are prevalent in most CDRSs such as user-based, item-based or knowledge transfer. This paper formalizes the CDRS illustrates sparsity related
28#
發(fā)表于 2025-3-26 09:36:28 | 只看該作者
29#
發(fā)表于 2025-3-26 13:55:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:54:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐安县| 罗源县| 炎陵县| 兴文县| 旬阳县| 龙岩市| 桦甸市| 乌拉特中旗| 射洪县| 兴业县| 鹰潭市| 麻阳| 绥阳县| 合山市| 许昌县| 临夏县| 资阳市| 巴楚县| 将乐县| 南昌县| 汝州市| 德令哈市| 中山市| 玛沁县| 舟曲县| 沙田区| 碌曲县| 麟游县| 五峰| 丰都县| 石嘴山市| 双城市| 五河县| 岑溪市| 巫溪县| 瑞金市| 平遥县| 乌鲁木齐市| 长丰县| 苏尼特左旗| 吉木萨尔县|