找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Micro-Electronics and Telecommunication Engineering; Proceedings of 3rd I Devendra Kumar Sharma,Valentina Emilia Balas,Korha Conference pro

[復(fù)制鏈接]
樓主: 要求
21#
發(fā)表于 2025-3-25 05:02:32 | 只看該作者
Kavita Srivastava,Sudhir Kumar Sharmas...The main text is divided into three parts. In Part I, the standard time-independent and time-dependent perturbation procedures are reviewed. This includes a new section at the end of chapter 2 concerning th978-3-319-79216-3978-3-319-15386-5Series ISSN 1615-5653 Series E-ISSN 2197-6791
22#
發(fā)表于 2025-3-25 07:35:20 | 只看該作者
Wine Quality Analysis Using Machine Learning Algorithms,ess would further be escalated using KNN which makes our model dynamic. Output of this proposed model is used to determine the wines’ quality on a scale of Good, Average or Bad. This proposed model can further be applied to several other products which need quality certification. Our prediction mode
23#
發(fā)表于 2025-3-25 14:06:06 | 只看該作者
Internet Traffic Detection and Classification Using Machine Learning,ical parameters prevents invasion of packet data and preserves data privacy. Use of machine learning reduces human intervention in monitoring the Internet traffic. Classification of Internet traffic in the UNSW NB 15 data set is done using five machine learning algorithms, which are K-nearest neighb
24#
發(fā)表于 2025-3-25 16:53:18 | 只看該作者
25#
發(fā)表于 2025-3-25 21:14:13 | 只看該作者
26#
發(fā)表于 2025-3-26 03:59:22 | 只看該作者
Analysis and Implementation of IWT-SVD Scheme for Video Steganography,and results in good perceptual quality, more robustness, and less computational cost. Simulation results also show that this new scheme outperforms adaptive steganography based on IWT-SVD in term of PSNR, MSE, and concealing capacity.
27#
發(fā)表于 2025-3-26 06:39:54 | 只看該作者
Handling Sparsity in Cross-Domain Recommendation Systems: Review, especially in the presence of novel users or items, or when user drift exists. This paper reviews recent efforts made for CDRS sparsity and user drift which are prevalent in most CDRSs such as user-based, item-based or knowledge transfer. This paper formalizes the CDRS illustrates sparsity related
28#
發(fā)表于 2025-3-26 09:36:28 | 只看該作者
29#
發(fā)表于 2025-3-26 13:55:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:54:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义县| 黄陵县| 当涂县| 奉贤区| 安图县| 安达市| 青海省| 丰城市| 河间市| 剑阁县| 永靖县| 东阿县| 锡林郭勒盟| 尼木县| 涞水县| 庆元县| 保康县| 聂拉木县| 太湖县| 和田县| 崇明县| 义乌市| 黄梅县| 朝阳县| 翁牛特旗| 来安县| 洛宁县| 自贡市| 松潘县| 昭通市| 桂平市| 稷山县| 伊宁市| 元氏县| 于田县| 凤凰县| 新乡市| 安岳县| 吉首市| 溧阳市| 成安县|