找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Micro-Electronics and Telecommunication Engineering; Proceedings of 3rd I Devendra Kumar Sharma,Valentina Emilia Balas,Korha Conference pro

[復制鏈接]
樓主: 要求
21#
發(fā)表于 2025-3-25 05:02:32 | 只看該作者
Kavita Srivastava,Sudhir Kumar Sharmas...The main text is divided into three parts. In Part I, the standard time-independent and time-dependent perturbation procedures are reviewed. This includes a new section at the end of chapter 2 concerning th978-3-319-79216-3978-3-319-15386-5Series ISSN 1615-5653 Series E-ISSN 2197-6791
22#
發(fā)表于 2025-3-25 07:35:20 | 只看該作者
Wine Quality Analysis Using Machine Learning Algorithms,ess would further be escalated using KNN which makes our model dynamic. Output of this proposed model is used to determine the wines’ quality on a scale of Good, Average or Bad. This proposed model can further be applied to several other products which need quality certification. Our prediction mode
23#
發(fā)表于 2025-3-25 14:06:06 | 只看該作者
Internet Traffic Detection and Classification Using Machine Learning,ical parameters prevents invasion of packet data and preserves data privacy. Use of machine learning reduces human intervention in monitoring the Internet traffic. Classification of Internet traffic in the UNSW NB 15 data set is done using five machine learning algorithms, which are K-nearest neighb
24#
發(fā)表于 2025-3-25 16:53:18 | 只看該作者
25#
發(fā)表于 2025-3-25 21:14:13 | 只看該作者
26#
發(fā)表于 2025-3-26 03:59:22 | 只看該作者
Analysis and Implementation of IWT-SVD Scheme for Video Steganography,and results in good perceptual quality, more robustness, and less computational cost. Simulation results also show that this new scheme outperforms adaptive steganography based on IWT-SVD in term of PSNR, MSE, and concealing capacity.
27#
發(fā)表于 2025-3-26 06:39:54 | 只看該作者
Handling Sparsity in Cross-Domain Recommendation Systems: Review, especially in the presence of novel users or items, or when user drift exists. This paper reviews recent efforts made for CDRS sparsity and user drift which are prevalent in most CDRSs such as user-based, item-based or knowledge transfer. This paper formalizes the CDRS illustrates sparsity related
28#
發(fā)表于 2025-3-26 09:36:28 | 只看該作者
29#
發(fā)表于 2025-3-26 13:55:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:54:01 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 02:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
五台县| 花垣县| 乐都县| 蒙山县| 富宁县| 垫江县| 巴塘县| 郸城县| 枣阳市| 金寨县| 永登县| 醴陵市| 阿巴嘎旗| 右玉县| 尉犁县| 达州市| 宁波市| 涿州市| 卓资县| 斗六市| 阳西县| 新民市| 禄丰县| 无为县| 富源县| 韶关市| 澄城县| 栾川县| 紫阳县| 烟台市| 白山市| 天全县| 会理县| 海淀区| 安阳县| 荣成市| 济宁市| 双柏县| 贵南县| 积石山| 黄山市|