找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Michael Young; Social Entrepreneur Briggs Asa Book 2001 Asa Briggs 2001 community.education.Nation.organization.politics.social change.soci

[復(fù)制鏈接]
查看: 13555|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:04:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Michael Young
副標(biāo)題Social Entrepreneur
編輯Briggs Asa
視頻videohttp://file.papertrans.cn/633/632684/632684.mp4
圖書封面Titlebook: Michael Young; Social Entrepreneur Briggs Asa Book 2001 Asa Briggs 2001 community.education.Nation.organization.politics.social change.soci
描述Michael Young is one of the key figures in British twentieth century history. Focusing on family, community and social change, he has cascaded ideas, in the process coining new words, like ‘meritocracy‘. He has also initiated or played a major role in creating new and well-known organisations. These include the Consumers‘ Association, the Open University, and the National and International Extension Colleges. In 1945 he drafted the Labour Party‘s successful election manifesto Let Us Face the Future : in 1965 he was the first Chairman of the new Social Science Research Council.
出版日期Book 2001
關(guān)鍵詞community; education; Nation; organization; politics; social change; social science
版次1
doihttps://doi.org/10.1057/9780230508521
isbn_softcover978-1-349-41207-5
isbn_ebook978-0-230-50852-1
copyrightAsa Briggs 2001
The information of publication is updating

書目名稱Michael Young影響因子(影響力)




書目名稱Michael Young影響因子(影響力)學(xué)科排名




書目名稱Michael Young網(wǎng)絡(luò)公開度




書目名稱Michael Young網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Michael Young被引頻次




書目名稱Michael Young被引頻次學(xué)科排名




書目名稱Michael Young年度引用




書目名稱Michael Young年度引用學(xué)科排名




書目名稱Michael Young讀者反饋




書目名稱Michael Young讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:25:08 | 只看該作者
Briggs Asaor the overall resulting approximate policy iteration, we provide guarantees on the performance obtained asymptotically, as the number of samples processed and iterations executed grows to infinity. We also provide finite-sample results, which apply when a finite number of samples and iterations are
板凳
發(fā)表于 2025-3-22 03:39:00 | 只看該作者
地板
發(fā)表于 2025-3-22 05:29:32 | 只看該作者
Briggs Asaal system problem, it is particularly useful in a model-based RL context, when an agent must learn a representation of state and a model of system dynamics online: because the representation (and hence all of the model’s parameters) are defined using only statistics of observable quantities, their l
5#
發(fā)表于 2025-3-22 11:46:40 | 只看該作者
Briggs Asablems and discuss many specific algorithms. Amongst others, we cover gradient-based temporal-difference learning, evolutionary strategies, policy-gradient algorithms and (natural) actor-critic methods. We discuss the advantages of different approaches and compare the performance of a state-of-the-ar
6#
發(fā)表于 2025-3-22 14:56:40 | 只看該作者
Briggs Asae aber auch m?chtige didaktische Werkzeuge, die entwickelt wurden, um Grundkonzepte der Programmierung zu vermitteln. Wir werden Figuren wie den Java-Hamster zu lernf?higen Agenten machen, die eigenst?ndig ihre Umgebung erkunden..978-3-662-61650-5978-3-662-61651-2
7#
發(fā)表于 2025-3-22 18:20:50 | 只看該作者
Briggs Asahe importance of KL regularization for policy improvement is illustrated. Subsequently, the KL-regularized reinforcement learning problem is introduced and described. REPS, TRPO and PPO are derived from a single set of equations and their differences are detailed. The survey concludes with a discuss
8#
發(fā)表于 2025-3-22 21:25:08 | 只看該作者
Briggs Asahe importance of KL regularization for policy improvement is illustrated. Subsequently, the KL-regularized reinforcement learning problem is introduced and described. REPS, TRPO and PPO are derived from a single set of equations and their differences are detailed. The survey concludes with a discuss
9#
發(fā)表于 2025-3-23 03:32:53 | 只看該作者
Briggs Asahe importance of KL regularization for policy improvement is illustrated. Subsequently, the KL-regularized reinforcement learning problem is introduced and described. REPS, TRPO and PPO are derived from a single set of equations and their differences are detailed. The survey concludes with a discuss
10#
發(fā)表于 2025-3-23 09:37:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 12:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平定县| 安丘市| 东乡族自治县| 台安县| 共和县| 桂林市| 和平县| 广南县| 桃园市| 沽源县| 祥云县| 和田县| 和顺县| 方正县| 株洲市| 措勤县| 噶尔县| 邵东县| 崇礼县| 探索| 察哈| 拉萨市| 隆安县| 东方市| 宾阳县| 宜川县| 开江县| 永德县| 马尔康县| 玉门市| 孙吴县| 内乡县| 蕉岭县| 六安市| 教育| 深圳市| 手游| 图们市| 卢龙县| 平江县| 安化县|