找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metric and Differential Geometry; The Jeff Cheeger Ann Xianzhe Dai,Xiaochun Rong Conference proceedings 2012 Springer Basel 2012 K-theory i

[復(fù)制鏈接]
查看: 38719|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:44:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Metric and Differential Geometry
副標(biāo)題The Jeff Cheeger Ann
編輯Xianzhe Dai,Xiaochun Rong
視頻videohttp://file.papertrans.cn/633/632471/632471.mp4
概述Original research papers and survey articles by distinguished experts in their fields.Broad range of topics in metric and differential geometry, focusing on the most recent advances.Dedicated to the 6
叢書名稱Progress in Mathematics
圖書封面Titlebook: Metric and Differential Geometry; The Jeff Cheeger Ann Xianzhe Dai,Xiaochun Rong Conference proceedings 2012 Springer Basel 2012 K-theory i
描述.Metric and Differential Geometry. grew out of?a similarly named conference held at Chern Institute of Mathematics, Tianjin and Capital Normal University, Beijing. The various contributions to this volume cover a broad range of topics in metric and differential geometry, including metric spaces, Ricci flow, Einstein manifolds, K?hler geometry, index theory, hypoelliptic Laplacian and analytic torsion. It offers the most recent advances as well as surveys the new developments. .Contributors: .M.T. Anderson.J.-M. Bismut.X. Chen.X. Dai.R. Harvey.P. Koskela.B. Lawson.X. Ma.R. Melrose.W. Müller.A. Naor.J. Simons.C. Sormani.D. Sullivan.S. Sun.G. Tian.K. Wildrick.W. Zhang.
出版日期Conference proceedings 2012
關(guān)鍵詞K-theory in geometry; distance geometry; global differential geometry
版次1
doihttps://doi.org/10.1007/978-3-0348-0257-4
isbn_softcover978-3-0348-0753-1
isbn_ebook978-3-0348-0257-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel 2012
The information of publication is updating

書目名稱Metric and Differential Geometry影響因子(影響力)




書目名稱Metric and Differential Geometry影響因子(影響力)學(xué)科排名




書目名稱Metric and Differential Geometry網(wǎng)絡(luò)公開度




書目名稱Metric and Differential Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Metric and Differential Geometry被引頻次




書目名稱Metric and Differential Geometry被引頻次學(xué)科排名




書目名稱Metric and Differential Geometry年度引用




書目名稱Metric and Differential Geometry年度引用學(xué)科排名




書目名稱Metric and Differential Geometry讀者反饋




書目名稱Metric and Differential Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:08:40 | 只看該作者
地板
發(fā)表于 2025-3-22 08:22:20 | 只看該作者
5#
發(fā)表于 2025-3-22 10:54:50 | 只看該作者
How Riemannian Manifolds Converge of metric spaces, convergence of metric measure spaces, intrinsic Flat convergence of integral current spaces, and ultralimits of metric spaces. We close with a speculative section addressing possible notions of intrinsic varifold convergence, convergence of Lorentzian manifolds and area convergence.
6#
發(fā)表于 2025-3-22 15:00:39 | 只看該作者
7#
發(fā)表于 2025-3-22 17:20:43 | 只看該作者
Space of K?hler Metrics (V) – K?hler Quantizationas non-positive curvature. There is associated to ? a sequence of finite-dimensional symmetric spaces. of non-compact Type. We prove that ? is the limit of .as metric spaces in certain sense. As applications, this provides more geometric proofs of certain known geometric properties of the space ?.
8#
發(fā)表于 2025-3-22 23:29:21 | 只看該作者
Split Special Lagrangian Geometrygeometry was first introduced. The natural setting is provided by doing geometry with the complex numbers . replaced by the double numbers ., where . with – = -1 is replaced by .with .. A rather surprising amount of complex geometry carries over, almost untouched, and this has been the subject of ma
9#
發(fā)表于 2025-3-23 01:33:53 | 只看該作者
10#
發(fā)表于 2025-3-23 05:46:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沂水县| 云浮市| 襄城县| 亳州市| 东兰县| 循化| 安国市| 南漳县| 百色市| 全南县| 建宁县| 泾阳县| 黄大仙区| 沿河| 同心县| 德格县| 肥西县| 南宫市| 乃东县| 绍兴市| 巴楚县| 东兰县| 米泉市| 利川市| 麻栗坡县| 繁昌县| 伊川县| 金堂县| 万全县| 渑池县| 上杭县| 安顺市| 大关县| 山东| 兴安盟| 闵行区| 溧水县| 包头市| 永康市| 玉田县| 公主岭市|