找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metric Foliations and Curvature; Detlef Gromoll,Gerard Walschap Book 2009 Birkh?user Basel 2009 Riemannian manifold.curvature.differential

[復(fù)制鏈接]
樓主: 短暫
11#
發(fā)表于 2025-3-23 10:44:17 | 只看該作者
Book 2009mannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a representative handful by means of metric fibrations or deformations thereof...This text is an attempt to document some of these constructions, many of w
12#
發(fā)表于 2025-3-23 14:46:25 | 只看該作者
Book 2009hich have only appeared in journal form. The emphasis here is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space..
13#
發(fā)表于 2025-3-23 20:35:33 | 只看該作者
14#
發(fā)表于 2025-3-23 23:05:42 | 只看該作者
Metric Foliations in Space Forms, are concerned. Surprisingly, a complete classification of metric foliations on spaces of constant curvature is not yet available. There does, however, exist a classification of metric ., at least in nonnegative curvature, which will be described in this chapter.
15#
發(fā)表于 2025-3-24 05:17:19 | 只看該作者
https://doi.org/10.1007/978-3-7643-8715-0Riemannian manifold; curvature; differential geometry; foliation; manifold; space form
16#
發(fā)表于 2025-3-24 10:18:32 | 只看該作者
Birkh?user Basel 2009
17#
發(fā)表于 2025-3-24 13:23:23 | 只看該作者
Metric Foliations and Curvature978-3-7643-8715-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
18#
發(fā)表于 2025-3-24 17:38:51 | 只看該作者
Submersions, Foliations, and Metrics,omorphisms. In the presence of a Riemannian metric, it is natural to consider distance-preserving maps rather than diffeomorphisms. These in turn generalize to isometric immersions, and their metric dual, Riemannian submersions.
19#
發(fā)表于 2025-3-24 21:09:09 | 只看該作者
Open Manifolds of Nonnegative Curvature,6], who gave a thorough account of their topology. Apart from some special cases, however, their metric structure has only been understood fairly recently. It illustrates the key role that Riemannian submersions seem to play in nonnegative curvature.
20#
發(fā)表于 2025-3-25 01:44:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
耒阳市| 仁怀市| 桂东县| 三穗县| 抚州市| 凤台县| 灌阳县| 诏安县| 鄂尔多斯市| 来凤县| 明溪县| 淳安县| 柳河县| 兴城市| 长春市| 绥阳县| 泰和县| 多伦县| 祥云县| 通江县| 乐安县| 府谷县| 汝州市| 稷山县| 土默特左旗| 罗城| 汶川县| 阜宁县| 吉安县| 白水县| 原阳县| 芜湖市| 本溪市| 广宁县| 城步| 科尔| 砀山县| 韶关市| 许昌县| 关岭| 高清|