找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Metric Foliations and Curvature; Detlef Gromoll,Gerard Walschap Book 2009 Birkh?user Basel 2009 Riemannian manifold.curvature.differential

[復(fù)制鏈接]
樓主: 短暫
11#
發(fā)表于 2025-3-23 10:44:17 | 只看該作者
Book 2009mannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a representative handful by means of metric fibrations or deformations thereof...This text is an attempt to document some of these constructions, many of w
12#
發(fā)表于 2025-3-23 14:46:25 | 只看該作者
Book 2009hich have only appeared in journal form. The emphasis here is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space..
13#
發(fā)表于 2025-3-23 20:35:33 | 只看該作者
14#
發(fā)表于 2025-3-23 23:05:42 | 只看該作者
Metric Foliations in Space Forms, are concerned. Surprisingly, a complete classification of metric foliations on spaces of constant curvature is not yet available. There does, however, exist a classification of metric ., at least in nonnegative curvature, which will be described in this chapter.
15#
發(fā)表于 2025-3-24 05:17:19 | 只看該作者
https://doi.org/10.1007/978-3-7643-8715-0Riemannian manifold; curvature; differential geometry; foliation; manifold; space form
16#
發(fā)表于 2025-3-24 10:18:32 | 只看該作者
Birkh?user Basel 2009
17#
發(fā)表于 2025-3-24 13:23:23 | 只看該作者
Metric Foliations and Curvature978-3-7643-8715-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
18#
發(fā)表于 2025-3-24 17:38:51 | 只看該作者
Submersions, Foliations, and Metrics,omorphisms. In the presence of a Riemannian metric, it is natural to consider distance-preserving maps rather than diffeomorphisms. These in turn generalize to isometric immersions, and their metric dual, Riemannian submersions.
19#
發(fā)表于 2025-3-24 21:09:09 | 只看該作者
Open Manifolds of Nonnegative Curvature,6], who gave a thorough account of their topology. Apart from some special cases, however, their metric structure has only been understood fairly recently. It illustrates the key role that Riemannian submersions seem to play in nonnegative curvature.
20#
發(fā)表于 2025-3-25 01:44:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红河县| 东兰县| 莲花县| 抚远县| 辉南县| 门源| 凤庆县| 朝阳县| 镇康县| 水城县| 镇赉县| 无锡市| 西华县| 揭阳市| 宝鸡市| 都匀市| 达州市| 来宾市| 瑞丽市| 毕节市| 普兰县| 武鸣县| 卢湾区| 营口市| 西安市| 永丰县| 吉安市| 万山特区| 郸城县| 察隅县| 铜山县| 巧家县| 龙岩市| 河北区| 丽水市| 赤峰市| 分宜县| 濮阳县| 台北县| 鄂托克前旗| 灵石县|