找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Methods of Microarray Data Analysis; Papers from CAMDA ’0 Simon M. Lin,Kimberly F. Johnson Book 2002 Springer Science+Business Media New Yo

[復(fù)制鏈接]
查看: 29973|回復(fù): 50
樓主
發(fā)表于 2025-3-21 18:29:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Methods of Microarray Data Analysis
副標(biāo)題Papers from CAMDA ’0
編輯Simon M. Lin,Kimberly F. Johnson
視頻videohttp://file.papertrans.cn/633/632400/632400.mp4
圖書封面Titlebook: Methods of Microarray Data Analysis; Papers from CAMDA ’0 Simon M. Lin,Kimberly F. Johnson Book 2002 Springer Science+Business Media New Yo
描述Microarray technology is a major experimental tool forfunctional genomic explorations, and will continue to be a major toolthroughout this decade and beyond. The recent explosion of thistechnology threatens to overwhelm the scientific community withmassive quantities of data. Because microarray data analysis is anemerging field, very few analytical models currently exist. .Methodsof. .Microarray Data Analysis. is one of the first booksdedicated to this exciting new field. In a single reference, readerscan learn about the most up-to-date methods ranging from datanormalization, feature selection and discriminative analysis tomachine learning techniques. .Currently, there are no standard procedures for the design andanalysis of microarray experiments. .Methods of Microarray Data..Analysis. focuses on two well-known data sets, using a differentmethod of analysis in each chapter. Real examples expose the strengthsand weaknesses of each method for a given situation, aimed at helpingreaders choose appropriate protocols and utilize them for their owndata set. In addition, web links are provided to the programs andtools discussed in several chapters. This book is an excellentreference not o
出版日期Book 2002
關(guān)鍵詞DNA; Microarray; bioinformatics; classification; data analysis; data mining; evolution; gene expression; gen
版次1
doihttps://doi.org/10.1007/978-1-4615-0873-1
isbn_softcover978-1-4613-5281-5
isbn_ebook978-1-4615-0873-1
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Methods of Microarray Data Analysis影響因子(影響力)




書目名稱Methods of Microarray Data Analysis影響因子(影響力)學(xué)科排名




書目名稱Methods of Microarray Data Analysis網(wǎng)絡(luò)公開度




書目名稱Methods of Microarray Data Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Methods of Microarray Data Analysis被引頻次




書目名稱Methods of Microarray Data Analysis被引頻次學(xué)科排名




書目名稱Methods of Microarray Data Analysis年度引用




書目名稱Methods of Microarray Data Analysis年度引用學(xué)科排名




書目名稱Methods of Microarray Data Analysis讀者反饋




書目名稱Methods of Microarray Data Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:36:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:54:37 | 只看該作者
Evolutionary Computation in Microarray Data Analysis genes simultaneously in a particular cell or tissue has far outpaced our ability to store, manage, and analyse the data being generated. In this review, we explore the use of evolutionary computation for dealing with some of the difficult statistical and computational challenges that have resulted
地板
發(fā)表于 2025-3-22 04:48:21 | 只看該作者
5#
發(fā)表于 2025-3-22 08:58:57 | 只看該作者
6#
發(fā)表于 2025-3-22 16:38:23 | 只看該作者
A Method to Improve Detection of Disease Using Selectively Expressed Genes in Microarray Datay expressed genes. This method does not rely on scaling or normalization factors in the comparison of data across subjects. Several genes in the . dataset are selectively expressed between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). We show that the presence or absence of ex
7#
發(fā)表于 2025-3-22 20:10:37 | 只看該作者
8#
發(fā)表于 2025-3-23 00:53:04 | 只看該作者
Classical Statistical Approaches to Molecular Classification of Cancer from Gene Expression Profiliner to utilize more robust, classical statistical methodologies in data analysis. We have demonstrated that classical statistical methods are applicable to analysis of data previously presented by .. Our preliminary analysis of all 6817 genes involves simple t-tests for statistically significant sepa
9#
發(fā)表于 2025-3-23 03:23:34 | 只看該作者
10#
發(fā)表于 2025-3-23 08:56:37 | 只看該作者
Applying Classification Separability Analysis to Microarray Datairst derive a new unified maximum separability analysis (UMSA) procedure for constructing linear classifiers and demonstrate that the procedure unifies the classic linear discriminant analysis method and the optimal margin hyperplane method as used in support vector machines. We then present a stepw
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平阳县| 青岛市| 东光县| 武隆县| 景泰县| 临城县| 枣阳市| 翁牛特旗| 襄樊市| 新干县| 云阳县| 邮箱| 福泉市| 深水埗区| 侯马市| 崇文区| 原平市| 吉林市| 嵊泗县| 崇明县| 门头沟区| 得荣县| 常德市| 滕州市| 汕尾市| 茌平县| 东乌珠穆沁旗| 宁城县| 拜城县| 揭阳市| 福建省| 城步| 昌乐县| 普洱| 乌兰浩特市| 石嘴山市| 万源市| 古交市| 南昌县| 仙桃市| 兴宁市|