找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Methods of Algebraic Geometry in Control Theory: Part II; Multivariable Linear Peter Falb Book 1999 Springer Science+Business Media New Yor

[復(fù)制鏈接]
樓主: Harrison
11#
發(fā)表于 2025-3-23 10:54:02 | 只看該作者
12#
發(fā)表于 2025-3-23 17:43:21 | 只看該作者
The Laurent Isomorphism Theorem: II,Now we wish to give an appropriate algebraic structure to Hank(., ., .). One approach would be to consider the image of .(., ., .) under the Laurent map, which by Theorem 10.16, would be a quasi-projective variety and then to show the image is bijective to Hank(., ., .). We shall use a different approach here.
13#
發(fā)表于 2025-3-23 19:54:37 | 只看該作者
Projective Algebraic Geometry IV: Families, Projections, Degree,We shall use the Main Theorem of Elimination Theory (10.16) to develop some families of varieties.
14#
發(fā)表于 2025-3-24 00:50:12 | 只看該作者
The State Space: Realizations, Controllability, Observability, Equivalence,We have already introduced “realizations” in dealing with the transfer and Hankel matrices (see Chapter 3). In this chapter, we extend the theory developed in Part I (e.g., Chapters 10 and 11).
15#
發(fā)表于 2025-3-24 05:20:22 | 只看該作者
Projective Algebraic Geometry V: Fibers of Morphisms,Our goal here is to extend and amplify the results of Part I, Chapter 18 for the projective situation. The term “variety” means either a projective or quasi-projective variety.
16#
發(fā)表于 2025-3-24 10:30:42 | 只看該作者
Projective Algebraic Geometry VI: Tangents, Differentials, Simple Subvarieties,We recall (I.20) that if .. is an affine variety and . ∈ .., then the (Zariski) ...., ..., is given by any of the following:
17#
發(fā)表于 2025-3-24 12:34:45 | 只看該作者
18#
發(fā)表于 2025-3-24 18:05:51 | 只看該作者
Projective Algebraic Geometry VIII: Intersections,We shall examine in a brief elementary way the notion of intersection of varieties ([F-5], [H-3]). We shall eventually prove Bezout’s Theorem which plays a role in pole placement.
19#
發(fā)表于 2025-3-24 22:40:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:51:35 | 只看該作者
Methods of Algebraic Geometry in Control Theory: Part II978-1-4612-1564-6Series ISSN 2324-9749 Series E-ISSN 2324-9757
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中牟县| 上栗县| 乌拉特中旗| 上栗县| 阿拉善盟| 白沙| 文水县| 朔州市| 铜鼓县| 昌宁县| 巴东县| 晋城| 攀枝花市| 东阳市| 玉溪市| 玉龙| 东港市| 新安县| 凤庆县| 芮城县| 望江县| 潮州市| 百色市| 永寿县| 大同县| 巢湖市| 濮阳市| 安化县| 江油市| 峨眉山市| 贡觉县| 剑川县| 靖远县| 额尔古纳市| 黄冈市| 嵊泗县| 安泽县| 青铜峡市| 大港区| 岳普湖县| 北辰区|