找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metamathematics of Fuzzy Logic; Petr Hájek Book 1998 Springer Science+Business Media Dordrecht 1998 addition.logic.mathematical logic.pred

[復(fù)制鏈接]
樓主: 分類
21#
發(fā)表于 2025-3-25 04:20:38 | 只看該作者
22#
發(fā)表于 2025-3-25 09:44:42 | 只看該作者
23#
發(fā)表于 2025-3-25 14:21:32 | 只看該作者
Miscellanea,ther directions are possible.) In Section 1 we present a rather strong fuzzy logic, based on the work of Takeuti and Titani, and containing ?ukasiewicz, G?del and product predicate logics ??, G?, Π? as its sublogics. We show completeness with respect to a non-finitary notion of provability. In Secti
24#
發(fā)表于 2025-3-25 18:08:49 | 只看該作者
Historical Remarks,overed everything; I apologize for all omissions. On the other hand, an attempt to collect all publications concerning fuzzy logic (in both broad and narrow senses) would lead to a special publication; note that e.g. the book of Klir and Yuan [115] contains 1731 references! We thus only select refer
25#
發(fā)表于 2025-3-25 20:30:00 | 只看該作者
1572-6126 Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference‘ can be naturally
26#
發(fā)表于 2025-3-26 03:59:09 | 只看該作者
Book 1998tant systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference‘ can be naturally understood
27#
發(fā)表于 2025-3-26 05:21:55 | 只看該作者
28#
發(fā)表于 2025-3-26 11:38:07 | 只看該作者
29#
發(fā)表于 2025-3-26 13:33:09 | 只看該作者
30#
發(fā)表于 2025-3-26 20:33:13 | 只看該作者
Historical Remarks,narrow senses) would lead to a special publication; note that e.g. the book of Klir and Yuan [115] contains 1731 references! We thus only select references that are relevant to fuzzy logic in the narrow sense.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙湾县| 南和县| 靖远县| 朝阳区| 安顺市| 上饶市| 东阳市| 卢湾区| 克什克腾旗| 吉首市| 福建省| 易门县| 新余市| 盖州市| 辉南县| 抚州市| 锦屏县| 安达市| 茂名市| 隆子县| 贡山| 香河县| 铅山县| 阳春市| 雅江县| 金川县| 吉木乃县| 疏附县| 清徐县| 新巴尔虎右旗| 太湖县| 上高县| 安义县| 临海市| 济南市| 安陆市| 台前县| 枣庄市| 姜堰市| 望奎县| 金门县|