找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metamathematics of Fuzzy Logic; Petr Hájek Book 1998 Springer Science+Business Media Dordrecht 1998 addition.logic.mathematical logic.pred

[復(fù)制鏈接]
樓主: 分類
21#
發(fā)表于 2025-3-25 04:20:38 | 只看該作者
22#
發(fā)表于 2025-3-25 09:44:42 | 只看該作者
23#
發(fā)表于 2025-3-25 14:21:32 | 只看該作者
Miscellanea,ther directions are possible.) In Section 1 we present a rather strong fuzzy logic, based on the work of Takeuti and Titani, and containing ?ukasiewicz, G?del and product predicate logics ??, G?, Π? as its sublogics. We show completeness with respect to a non-finitary notion of provability. In Secti
24#
發(fā)表于 2025-3-25 18:08:49 | 只看該作者
Historical Remarks,overed everything; I apologize for all omissions. On the other hand, an attempt to collect all publications concerning fuzzy logic (in both broad and narrow senses) would lead to a special publication; note that e.g. the book of Klir and Yuan [115] contains 1731 references! We thus only select refer
25#
發(fā)表于 2025-3-25 20:30:00 | 只看該作者
1572-6126 Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference‘ can be naturally
26#
發(fā)表于 2025-3-26 03:59:09 | 只看該作者
Book 1998tant systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference‘ can be naturally understood
27#
發(fā)表于 2025-3-26 05:21:55 | 只看該作者
28#
發(fā)表于 2025-3-26 11:38:07 | 只看該作者
29#
發(fā)表于 2025-3-26 13:33:09 | 只看該作者
30#
發(fā)表于 2025-3-26 20:33:13 | 只看該作者
Historical Remarks,narrow senses) would lead to a special publication; note that e.g. the book of Klir and Yuan [115] contains 1731 references! We thus only select references that are relevant to fuzzy logic in the narrow sense.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙海市| 千阳县| 怀来县| 区。| 南宫市| 准格尔旗| 宁阳县| 千阳县| 涟水县| 枣庄市| 龙井市| 灵璧县| 乌审旗| 从江县| 沛县| 普定县| 应城市| 庆城县| 武宣县| 辽宁省| 天祝| 梅河口市| 遵义市| 湖口县| 甘谷县| 兴和县| 松溪县| 镇平县| 承德县| 宁河县| 新野县| 宜章县| 青海省| 建昌县| 荆门市| 邹平县| 浪卡子县| 东丰县| 页游| 曲阳县| 乌拉特后旗|