找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metaheuristic Procedures for Training Neural Networks; Enrique Alba,Rafael Martí Book 2006 Springer-Verlag US 2006 Approximation.algorithm

[復(fù)制鏈接]
查看: 25564|回復(fù): 49
樓主
發(fā)表于 2025-3-21 19:10:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Metaheuristic Procedures for Training Neural Networks
編輯Enrique Alba,Rafael Martí
視頻videohttp://file.papertrans.cn/632/631352/631352.mp4
概述Apart from research efforts bringing together metaheuristic techniques to train artificial neural networks, this is the first book to achieve this objective. This book provides a unified approach to t
叢書名稱Operations Research/Computer Science Interfaces Series
圖書封面Titlebook: Metaheuristic Procedures for Training Neural Networks;  Enrique Alba,Rafael Martí Book 2006 Springer-Verlag US 2006 Approximation.algorithm
描述.Metaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book‘s objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization..
出版日期Book 2006
關(guān)鍵詞Approximation; algorithm; algorithms; artificial intelligence; distribution; genetic algorithms; metaheuri
版次1
doihttps://doi.org/10.1007/0-387-33416-5
isbn_softcover978-1-4419-4128-2
isbn_ebook978-0-387-33416-5Series ISSN 1387-666X Series E-ISSN 2698-5489
issn_series 1387-666X
copyrightSpringer-Verlag US 2006
The information of publication is updating

書目名稱Metaheuristic Procedures for Training Neural Networks影響因子(影響力)




書目名稱Metaheuristic Procedures for Training Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Metaheuristic Procedures for Training Neural Networks網(wǎng)絡(luò)公開度




書目名稱Metaheuristic Procedures for Training Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Metaheuristic Procedures for Training Neural Networks被引頻次




書目名稱Metaheuristic Procedures for Training Neural Networks被引頻次學(xué)科排名




書目名稱Metaheuristic Procedures for Training Neural Networks年度引用




書目名稱Metaheuristic Procedures for Training Neural Networks年度引用學(xué)科排名




書目名稱Metaheuristic Procedures for Training Neural Networks讀者反饋




書目名稱Metaheuristic Procedures for Training Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:14:48 | 只看該作者
Simulated Annealing optimization problems. In this chapter we show how it can be used to train artificial neural networks by examples. Experimental results indicate that good results can be obtained with little or no tuning.
板凳
發(fā)表于 2025-3-22 00:27:54 | 只看該作者
Tabu Searchomponents of tabu search is its use of adaptive memory, which creates a more flexible search behavior. Memory based strategies are therefore the hallmark of tabu search approaches, founded on a quest for “integrating principles,” by which alternative forms of memory are appropriately combined with e
地板
發(fā)表于 2025-3-22 05:33:30 | 只看該作者
5#
發(fā)表于 2025-3-22 11:12:56 | 只看該作者
6#
發(fā)表于 2025-3-22 12:53:15 | 只看該作者
7#
發(fā)表于 2025-3-22 21:01:01 | 只看該作者
8#
發(fā)表于 2025-3-22 22:59:34 | 只看該作者
Ant Colony Optimizationesent the general description of ACO, as well as its adaptation for the application to continuous optimization problems. We apply this adaptation of ACO to optimize the weights of feed-forward neural networks for the purpose of pattern classification. As test problems we choose three data sets from
9#
發(fā)表于 2025-3-23 01:55:04 | 只看該作者
Cooperative Coevolutionary Methodsorks that must cooperate to form a solution for a specific problem, instead of evolving complete networks. The combination of these subnetworks is part of a coevolutionary process. The best combinations of subnetworks must be evolved together with the coevolution of the subnetworks. Several subpopul
10#
發(fā)表于 2025-3-23 05:50:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三门县| 桐城市| 安宁市| 徐闻县| 侯马市| 西充县| 巨鹿县| 马边| 巴里| 乌拉特前旗| 竹北市| 玛曲县| 江安县| 巴彦县| 固原市| 开阳县| 沂南县| 曲沃县| 舟山市| 江口县| 樟树市| 甘泉县| 固阳县| 方城县| 张掖市| 海安县| 竹溪县| 鹿泉市| 黄浦区| 化隆| 泰州市| 无为县| 乌苏市| 宁海县| 乐亭县| 中超| 普安县| 墨竹工卡县| 冷水江市| 隆尧县| 馆陶县|