找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mengentheoretische Topologie; Boto Querenburg,G. Bengel,H. Zieschang Textbook 19731st edition Springer-Verlag Berlin Heidelberg 1973 Topol

[復(fù)制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 10:28:32 | 只看該作者
,Vollst?ndige, Polnische und Bairesche R?ume,Nach Definition 12.9 und Satz 12.5 ist ein uniformer Raum genau dann vollst?ndig, wenn jeder Cauchy-Filter ? einen Berührungspunkt hat. Die Charakterisierung der quasikompakten R?ume durch Filter (s. 8.2(c)) legt nahe, Beziehungen zwischen vollst?ndigen und quasikompakten R?umen zu untersuchen. Dazu zun?chst die folgende
12#
發(fā)表于 2025-3-23 17:20:23 | 只看該作者
,Funktionenr?ume,Sind X und Y Mengen, so bezeichnen wir mit F(X,Y) die Menge der Abbildungen von X nach Y. Sind X und Y mit einer Topologie versehen, so sei C(X,Y) die Menge der stetigen Abbildungen f: X→ Y. Wir untersuchen in diesem Kapitel verschiedene Topologien auf F(X,Y).
13#
發(fā)表于 2025-3-23 19:01:46 | 只看該作者
,Parakompakte R?ume und Metrisationss?tze, 10.l4): Ein topologischer Raum ist genau dann metrisierbar, wenn er regul?r ist und eine Basis besitzt, die aus abz?hlbar vielen lokalendlichen Teilsystemen besteht. Vorweg wird das Problem behandelt, aus vorgegebenen Mengensystemen lokal-endliche zu gewinnen. Dafür hat sich der Begriff der Parakompaktheit als angemessen erwiesen.
14#
發(fā)表于 2025-3-24 01:02:27 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:41 | 只看該作者
Ringe reellwertiger, stetiger Funktionen,rangezogen. Es werden dabei Beziehungen zwischen den topologischen Eigenschaften von X und den algebraischen Eigenschaften von C(X) hergestellt. Es ist klar, da? der Ring C(X) eindeutig durch die Topologie von X bestimmt ist; es wird gezeigt, da? zwei kompakte R?ume X und Y hom?omorph sind, wenn die Ringe C(X) und C(Y) isomorph sind.
16#
發(fā)表于 2025-3-24 08:48:47 | 只看該作者
Trennungseigenschatten,sjunkte Umgebungen voneinander trennen, denn X besitzt nur die offenen Mengen X und ?. Die Existenz genügend vieler offener Mengen, die bestimme Mengen voneinander trennen, fordert man durch Trennungsaxiome. Manche Trennungseigenschaften lassen sich in die Frage nach der Existenz stetiger, reellwertiger, nicht, konstanter Funktionen übersetzen.
17#
發(fā)表于 2025-3-24 11:47:06 | 只看該作者
,Kompakte R?ume,en abgeschlossenen Intervalls in R durch offene Mengen besitzt eine endliche Teilüberdeckung. In diesem Kapitel untersuchen wir R?ume msit derselben überdeckungseigenschaft wie abgeschlossene Intervalle, d bezeichne die euklidische Metrik des R..
18#
發(fā)表于 2025-3-24 17:09:39 | 只看該作者
,Satz von Stone-Weierstra?,atz verallgemeinern wir für stetige Funktionen auf kompakten R?umen: Es sei D eine Menge stetiger reellwertiger Funktionen auf dem kompakten Raum X. Wir geben ein Kriterium dafür an, da? sich jede stetige Funktion auf X gleichm??ig durch Polynome in den Funktionen aus D approximieren l??t
19#
發(fā)表于 2025-3-24 19:54:09 | 只看該作者
Filter und Konvergenz,s Hilfsmittel sind. Als Verallgemeinerungen des Folgenbegriffes gibt es die Begriffe des Netzes und des Filters, von denen sich der letztere in der Literatur am st?rksten durchgesetzt hat. Beide erlauben eine direkte übertragung der Schlüsse mittels Folgen auf den allgemeinen Fall.
20#
發(fā)表于 2025-3-25 01:22:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南木林县| 射阳县| 连南| 清苑县| 滕州市| 通榆县| 青铜峡市| 开封市| 射阳县| 商丘市| 沙湾县| 靖宇县| 宁乡县| 普定县| 弥勒县| 雅江县| 昔阳县| 惠水县| 永年县| 新营市| 桓仁| 无极县| 平塘县| 金溪县| 响水县| 克山县| 石家庄市| 南丹县| 雅江县| 太仆寺旗| 麻江县| 广州市| 营口市| 黔西| 长沙市| 瑞昌市| 大厂| 封丘县| 西乡县| 鹤岗市| 德化县|