找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mellin-Transform Method for Integral Evaluation; Introduction and App George Fikioris Book 2007 Springer Nature Switzerland AG 2007

[復(fù)制鏈接]
查看: 13394|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:08:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mellin-Transform Method for Integral Evaluation
副標(biāo)題Introduction and App
編輯George Fikioris
視頻videohttp://file.papertrans.cn/631/630315/630315.mp4
叢書名稱Synthesis Lectures on Computational Electromagnetics
圖書封面Titlebook: Mellin-Transform Method for Integral Evaluation; Introduction and App George Fikioris Book 2007 Springer Nature Switzerland AG 2007
描述This book introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application if this method to electromagnetics problems. Once the basics have been mastered, one quickly realizes that the method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other methods, the present method is very straightforward to apply; it usually requires laborious calculations, but little ingenuity. Two functions, the generalized hypergeometric function and the Meijer G-function, are very much related to the Mellin-transform method and arise frequently when the method is applied. Because these functions can be automatically handled by modern numerical routines, they are now much more useful than they were in the past. The Mellin-transform method and the two aforementioned functions are discussed first. Then the methodis applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new. In the first example, a closed-form expression, as a generalized hype
出版日期Book 2007
版次1
doihttps://doi.org/10.1007/978-3-031-01697-4
isbn_softcover978-3-031-00569-5
isbn_ebook978-3-031-01697-4Series ISSN 1932-1252 Series E-ISSN 1932-1716
issn_series 1932-1252
copyrightSpringer Nature Switzerland AG 2007
The information of publication is updating

書目名稱Mellin-Transform Method for Integral Evaluation影響因子(影響力)




書目名稱Mellin-Transform Method for Integral Evaluation影響因子(影響力)學(xué)科排名




書目名稱Mellin-Transform Method for Integral Evaluation網(wǎng)絡(luò)公開度




書目名稱Mellin-Transform Method for Integral Evaluation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mellin-Transform Method for Integral Evaluation被引頻次




書目名稱Mellin-Transform Method for Integral Evaluation被引頻次學(xué)科排名




書目名稱Mellin-Transform Method for Integral Evaluation年度引用




書目名稱Mellin-Transform Method for Integral Evaluation年度引用學(xué)科排名




書目名稱Mellin-Transform Method for Integral Evaluation讀者反饋




書目名稱Mellin-Transform Method for Integral Evaluation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:50:24 | 只看該作者
地板
發(fā)表于 2025-3-22 07:59:26 | 只看該作者
5#
發(fā)表于 2025-3-22 10:12:02 | 只看該作者
6#
發(fā)表于 2025-3-22 13:55:53 | 只看該作者
7#
發(fā)表于 2025-3-22 17:25:49 | 只看該作者
Book 2007his method to electromagnetics problems. Once the basics have been mastered, one quickly realizes that the method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other metho
8#
發(fā)表于 2025-3-22 22:17:37 | 只看該作者
9#
發(fā)表于 2025-3-23 02:35:07 | 只看該作者
10#
發(fā)表于 2025-3-23 06:42:05 | 只看該作者
978-3-031-00569-5Springer Nature Switzerland AG 2007
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆昌县| 庐江县| 罗江县| 广灵县| 南阳市| 花莲县| 闻喜县| 内乡县| 昆山市| 桂林市| 安康市| 易门县| 区。| 茌平县| 临桂县| 邵阳县| 永川市| 丰城市| 东源县| 海阳市| 长汀县| 江城| 镇宁| 会东县| 南安市| 阳原县| 修文县| 武乡县| 筠连县| 阿巴嘎旗| 墨竹工卡县| 三穗县| 靖安县| 贵州省| 伽师县| 原平市| 偏关县| 徐汇区| 南安市| 高密市| 新密市|