找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Imaging and Computer-Aided Diagnosis; Proceeding of 2020 I Ruidan Su,Han Liu Conference proceedings 2020 Springer Nature Singapore

[復制鏈接]
樓主: 無法仿效
31#
發(fā)表于 2025-3-26 22:58:36 | 只看該作者
Sparse Representation Label Fusion Method Combining Pixel Grayscale Weight for Brain MR Segmentatioe also compared our methods with commonly used automatic segmentation tools and state-of-the-art methods, and the average Dice similarity coefficient (Dsc) of the subcutaneous tissues obtained by our method was significantly higher than that of the automatic segmentation tools and state-of-the-art methods.
32#
發(fā)表于 2025-3-27 04:33:21 | 只看該作者
33#
發(fā)表于 2025-3-27 08:20:46 | 只看該作者
Fusion Segmentation of Head Medical Image with Partially Annotated Data,n only one model, and we have proved that it outperforms the baseline method. To some extent, using partially annotated medical image datasets can help to solve the problem that the scarce source of professionally annotated medical image data. What’s more, the proposed method will achieve better performance.
34#
發(fā)表于 2025-3-27 13:06:13 | 只看該作者
35#
發(fā)表于 2025-3-27 17:09:11 | 只看該作者
36#
發(fā)表于 2025-3-27 21:51:04 | 只看該作者
A Novel Classification Method of Medical Image Segmentation Algorithm,more in line with people’s intuitive feelings. Using this new segmentation principle to classify medical image segmentation algorithms is helpful to clarify the relationship between various algorithms.
37#
發(fā)表于 2025-3-28 01:45:26 | 只看該作者
38#
發(fā)表于 2025-3-28 04:06:38 | 只看該作者
A Biomedical Survey on Osteoporosis Classification Techniques,ation, Invasive Techniques, and Biosensors Classification. Authors in this study attempted to explain the direction of future studies in the field of Osteoporosis diagnosis by presenting an accurate classification of Osteoporosis diagnostic techniques. Finally the role of stress and bone displacement in osteoporosis is simulated.
39#
發(fā)表于 2025-3-28 08:37:32 | 只看該作者
40#
發(fā)表于 2025-3-28 14:04:47 | 只看該作者
Conference proceedings 2020and valuable resource for researchers involved in image formation, experimental methods, image performance, segmentation, pattern recognition, feature extraction, classifier design, machine learning / deep learning, radiomics, CAD workstation design, human–computer interaction, databases, and performance evaluation.? .
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 23:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汕头市| 灵丘县| 南充市| 永昌县| 屏边| 咸宁市| 东山县| 渝中区| 高唐县| 奈曼旗| 湘阴县| 天峻县| 奎屯市| 蒙城县| 万源市| 大港区| 涪陵区| 天门市| 云安县| 伊宁县| 甘孜| 上虞市| 保靖县| 望谟县| 大名县| 明溪县| 金乡县| 曲靖市| 台北县| 准格尔旗| 武川县| 鄂托克旗| 高雄县| 手游| 吉林省| 龙江县| 奉化市| 抚顺市| 滨海县| 颍上县| 济宁市|