找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Understanding and Analysis; 28th Annual Conferen Moi Hoon Yap,Connah Kendrick,Reyer Zwiggelaar Conference proceedings 2024 Th

[復制鏈接]
樓主: deduce
21#
發(fā)表于 2025-3-25 06:55:13 | 只看該作者
H-FCBFormer: Hierarchical Fully Convolutional Branch Transformer for?Occlusal Contact Segmentation wng medically true positive semantic segmentation masks derived from expert annotated articulating paper masks and gold standard masks. The proposed model outperforms other machine learning methods evaluated at detecting medically true positive contacts and performs better than dentists in terms of a
22#
發(fā)表于 2025-3-25 10:07:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:07:22 | 只看該作者
SA-GCN: Scale Adaptive Graph Convolutional Network for ASD Identificationrk that employs adaptive multi-channel graph convolutional network (AM-GCN) for ASD diagnosis. We introduce mutual learning in two parallel AM-GCNs to integrate the complementary information from different atlases. To alleviate the over-smoothing problem, we add attention-based jumping connections i
24#
發(fā)表于 2025-3-25 19:39:27 | 只看該作者
25#
發(fā)表于 2025-3-25 23:18:01 | 只看該作者
YOLO-TL: A Tiny Object Segmentation Framework for?Low Quality Medical Imagesbundant and densely distributed nature within the frame. Based on these difficult thinking on, a method is used SPD convolution to construct a new multi-feature fusion layer, and combined with the SimAM attention mechanism to improve the current YOLOv8 model. YOLO-TL achieves a Dice score of 0.852 a
26#
發(fā)表于 2025-3-26 02:32:09 | 只看該作者
Superresolution of?Real-World Multiscale Bone CT Verified with?Clinical Bone Measuresach with training the models on synthetic data, where low-resolution images are produced by subsampling and blurring high-resolution images, as is the common approach when assessing superresolution architectures for medical images. When evaluating performance, we calculate both clinically relevant b
27#
發(fā)表于 2025-3-26 04:57:08 | 只看該作者
AdaptiveSAM: Towards Efficient Tuning of SAM for Surgical Scene Segmentationd explicitly for every image, making this solution increasingly tedious with higher data size. In this work, we propose AdaptiveSAM - an adaptive modification of SAM that can adjust to new datasets quickly and efficiently, while enabling text-prompted segmentation. For finetuning AdaptiveSAM, we pro
28#
發(fā)表于 2025-3-26 09:24:28 | 只看該作者
29#
發(fā)表于 2025-3-26 15:55:31 | 只看該作者
Multimodal Deformable Image Registration for?Long-COVID Analysis Based on?Progressive Alignment and?rates a novel Multi-perspective Loss (MPL) function, enhancing state-of-the-art deep learning methods for monomodal registration by making them adaptable for multimodal tasks. The registration results achieve a Dice coefficient score of 0.913, indicating a substantial improvement over the state-of-t
30#
發(fā)表于 2025-3-26 17:46:11 | 只看該作者
s practitioners and scholars across the health humanities, humanities, arts, social sciences, public health,and medicine. The major focus of the volume is to highlight the role of the health humanities inenriching the social, cultural, and phenomenological experience and understanding of illness, health, and wellbeing..978-3-030-26825-1
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南陵县| 布尔津县| 凤翔县| 陵川县| 资兴市| 祁阳县| 环江| 桦甸市| 青州市| 青冈县| 杨浦区| 广汉市| 盘锦市| 宜阳县| 大姚县| 兰州市| 乐业县| 确山县| 本溪市| 肃北| 兴安县| 乌海市| 广宁县| 响水县| 黄龙县| 海林市| 云浮市| 达尔| 张家港市| 明溪县| 平江县| 家居| 新民市| 扎鲁特旗| 汝州市| 德化县| 嘉定区| 靖州| 综艺| 兴义市| 微山县|