找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Understanding and Analysis; 26th Annual Conferen Guang Yang,Angelica Aviles-Rivero,Carola-Bibiane S Conference proceedings 20

[復(fù)制鏈接]
查看: 38916|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:26:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Medical Image Understanding and Analysis
副標(biāo)題26th Annual Conferen
編輯Guang Yang,Angelica Aviles-Rivero,Carola-Bibiane S
視頻videohttp://file.papertrans.cn/630/629284/629284.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Medical Image Understanding and Analysis; 26th Annual Conferen Guang Yang,Angelica Aviles-Rivero,Carola-Bibiane S Conference proceedings 20
描述.This book constitutes the refereed proceedings of the 26th Conference on Medical Image Understanding and Analysis, MIUA 2022, held in Cambridge, UK, in July 2022. ..The 65 full papers presented were carefully reviewed and selected from 95 submissions. They were organized according to following topical sections: biomarker detection; image registration, and reconstruction; image segmentation; generative models, biomedical simulation and modelling; classification; image enhancement, quality assessment, and data privacy; radiomics, predictive models, and quantitative imaging..Chapter “FCN-Transformer Feature Fusion for Polyp Segmentation” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; classification methods; color image processing; computer networks; computer sys
版次1
doihttps://doi.org/10.1007/978-3-031-12053-4
isbn_softcover978-3-031-12052-7
isbn_ebook978-3-031-12053-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Medical Image Understanding and Analysis影響因子(影響力)




書(shū)目名稱(chēng)Medical Image Understanding and Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Medical Image Understanding and Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Medical Image Understanding and Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Medical Image Understanding and Analysis被引頻次




書(shū)目名稱(chēng)Medical Image Understanding and Analysis被引頻次學(xué)科排名




書(shū)目名稱(chēng)Medical Image Understanding and Analysis年度引用




書(shū)目名稱(chēng)Medical Image Understanding and Analysis年度引用學(xué)科排名




書(shū)目名稱(chēng)Medical Image Understanding and Analysis讀者反饋




書(shū)目名稱(chēng)Medical Image Understanding and Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:47 | 只看該作者
Multimodal Cardiomegaly Classification with?Image-Derived Digital Biomarkers-derived digital biomarkers, the cardiothoracic ratio (CTR) and the cardiopulmonary area ratio (CPAR). The CTR and CPAR values are estimated using segmentation and detection models. These are then integrated into a multimodal network trained simultaneously on chest radiographs and ICU data (vital si
板凳
發(fā)表于 2025-3-22 00:45:42 | 只看該作者
Proton Density Fat Fraction of?Breast Adipose Tissue: Comparison of?the?Effect of?Fat Spectra and?Inmarker which has not yet been thoroughly examined in the characterisation of breast fat; this work therefore explores the estimation of breast-specific PDFF. An MR spectrum derived from healthy breast fat is shown to perform significantly better in PDFF calculation of breast adipose tissue amongst a
地板
發(fā)表于 2025-3-22 05:38:26 | 只看該作者
Revisiting the?Shape-Bias of?Deep Learning for?Dermoscopic Skin Lesion Classificationrowing body of work aiming to align deep models’ decision-making processes with the fundamental properties of human vision. The reliance on shape features is primarily expected to improve the robustness of these models under covariate shift. In this paper, we revisit the significance of . for the cl
5#
發(fā)表于 2025-3-22 10:12:27 | 只看該作者
6#
發(fā)表于 2025-3-22 15:41:42 | 只看該作者
7#
發(fā)表于 2025-3-22 20:39:29 | 只看該作者
8#
發(fā)表于 2025-3-22 22:47:17 | 只看該作者
Faster Diffusion Cardiac MRI with?Deep Learning-Based Breath Hold Reductionvo and non-invasively, which no other imaging modality allows. This innovative technology could revolutionise the ability to perform cardiac clinical diagnosis, risk stratification, prognosis and therapy follow-up. However, DT-CMR is currently inefficient with over six minutes needed to acquire a si
9#
發(fā)表于 2025-3-23 03:58:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:10:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
共和县| 卢氏县| 靖远县| 永德县| 丹阳市| 滨海县| 平远县| 宜川县| 永州市| 石家庄市| 平潭县| 安塞县| 米脂县| 莒南县| 当阳市| 淳化县| 镇康县| 万年县| 恩平市| 藁城市| 黑山县| 息烽县| 防城港市| 准格尔旗| 周口市| 新沂市| 湘阴县| 延寿县| 庆城县| 老河口市| 巍山| 高青县| 望都县| 洛扎县| 延津县| 辛集市| 新田县| 马关县| 镇宁| 平和县| 岐山县|