找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Understanding and Analysis; 26th Annual Conferen Guang Yang,Angelica Aviles-Rivero,Carola-Bibiane S Conference proceedings 20

[復(fù)制鏈接]
查看: 38916|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:26:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Medical Image Understanding and Analysis
副標(biāo)題26th Annual Conferen
編輯Guang Yang,Angelica Aviles-Rivero,Carola-Bibiane S
視頻videohttp://file.papertrans.cn/630/629284/629284.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Medical Image Understanding and Analysis; 26th Annual Conferen Guang Yang,Angelica Aviles-Rivero,Carola-Bibiane S Conference proceedings 20
描述.This book constitutes the refereed proceedings of the 26th Conference on Medical Image Understanding and Analysis, MIUA 2022, held in Cambridge, UK, in July 2022. ..The 65 full papers presented were carefully reviewed and selected from 95 submissions. They were organized according to following topical sections: biomarker detection; image registration, and reconstruction; image segmentation; generative models, biomedical simulation and modelling; classification; image enhancement, quality assessment, and data privacy; radiomics, predictive models, and quantitative imaging..Chapter “FCN-Transformer Feature Fusion for Polyp Segmentation” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; classification methods; color image processing; computer networks; computer sys
版次1
doihttps://doi.org/10.1007/978-3-031-12053-4
isbn_softcover978-3-031-12052-7
isbn_ebook978-3-031-12053-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Medical Image Understanding and Analysis影響因子(影響力)




書(shū)目名稱(chēng)Medical Image Understanding and Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Medical Image Understanding and Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Medical Image Understanding and Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Medical Image Understanding and Analysis被引頻次




書(shū)目名稱(chēng)Medical Image Understanding and Analysis被引頻次學(xué)科排名




書(shū)目名稱(chēng)Medical Image Understanding and Analysis年度引用




書(shū)目名稱(chēng)Medical Image Understanding and Analysis年度引用學(xué)科排名




書(shū)目名稱(chēng)Medical Image Understanding and Analysis讀者反饋




書(shū)目名稱(chēng)Medical Image Understanding and Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:47 | 只看該作者
Multimodal Cardiomegaly Classification with?Image-Derived Digital Biomarkers-derived digital biomarkers, the cardiothoracic ratio (CTR) and the cardiopulmonary area ratio (CPAR). The CTR and CPAR values are estimated using segmentation and detection models. These are then integrated into a multimodal network trained simultaneously on chest radiographs and ICU data (vital si
板凳
發(fā)表于 2025-3-22 00:45:42 | 只看該作者
Proton Density Fat Fraction of?Breast Adipose Tissue: Comparison of?the?Effect of?Fat Spectra and?Inmarker which has not yet been thoroughly examined in the characterisation of breast fat; this work therefore explores the estimation of breast-specific PDFF. An MR spectrum derived from healthy breast fat is shown to perform significantly better in PDFF calculation of breast adipose tissue amongst a
地板
發(fā)表于 2025-3-22 05:38:26 | 只看該作者
Revisiting the?Shape-Bias of?Deep Learning for?Dermoscopic Skin Lesion Classificationrowing body of work aiming to align deep models’ decision-making processes with the fundamental properties of human vision. The reliance on shape features is primarily expected to improve the robustness of these models under covariate shift. In this paper, we revisit the significance of . for the cl
5#
發(fā)表于 2025-3-22 10:12:27 | 只看該作者
6#
發(fā)表于 2025-3-22 15:41:42 | 只看該作者
7#
發(fā)表于 2025-3-22 20:39:29 | 只看該作者
8#
發(fā)表于 2025-3-22 22:47:17 | 只看該作者
Faster Diffusion Cardiac MRI with?Deep Learning-Based Breath Hold Reductionvo and non-invasively, which no other imaging modality allows. This innovative technology could revolutionise the ability to perform cardiac clinical diagnosis, risk stratification, prognosis and therapy follow-up. However, DT-CMR is currently inefficient with over six minutes needed to acquire a si
9#
發(fā)表于 2025-3-23 03:58:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:10:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥化市| 那曲县| 新余市| 北川| 弥勒县| 鄂尔多斯市| 兴仁县| 双江| 义乌市| 于都县| 金阳县| 名山县| 东源县| 冕宁县| 连云港市| 泰来县| 阿荣旗| 区。| 江津市| 启东市| 台南县| 蕉岭县| 浙江省| 阳春市| 水富县| 土默特左旗| 金湖县| 夏邑县| 昌平区| 安陆市| 元氏县| 龙岩市| 甘德县| 巨野县| 榕江县| 绵竹市| 天全县| 澄迈县| 绵阳市| 金昌市| 浪卡子县|