找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Learning with Limited and Noisy Data; Second International Zhiyun Xue,Sameer Antani,Zhaohui Liang Conference proceedings 2023

[復(fù)制鏈接]
樓主: 投降
41#
發(fā)表于 2025-3-28 15:47:53 | 只看該作者
42#
發(fā)表于 2025-3-28 20:35:40 | 只看該作者
ScribSD: Scribble-Supervised Fetal MRI Segmentation Based on?Simultaneous Feature and?Prediction Sel. However, obtaining a large amount of high-quality manually annotated fetal MRI is time-consuming and requires specialized knowledge, which hinders the widespread application that relies on such data to train a model with good segmentation performance. Using weak annotations such as scribbles can s
43#
發(fā)表于 2025-3-28 23:12:58 | 只看該作者
Label-Efficient Contrastive Learning-Based Model for?Nuclei Detection and?Classification in?3D Cardiing-based methods requires a large amount of pixel-wise annotated data, which is time-consuming and labor-intensive, especially in 3D images. An alternative approach is to adapt weak-annotation methods, such as labeling each nucleus with a point, but this method does not extend from 2D histopatholog
44#
發(fā)表于 2025-3-29 04:41:02 | 只看該作者
45#
發(fā)表于 2025-3-29 08:37:02 | 只看該作者
Dual-Domain Iterative Network with?Adaptive Data Consistency for?Joint Denoising and?Few-Angle Recons. Reducing the dose of the injected tracer is essential for lowering the patient’s radiation exposure, but it will lead to increased image noise. Additionally, the latest dedicated cardiac SPECT scanners typically acquire projections in fewer angles using fewer detectors to reduce hardware expenses
46#
發(fā)表于 2025-3-29 12:59:13 | 只看該作者
47#
發(fā)表于 2025-3-29 17:03:47 | 只看該作者
48#
發(fā)表于 2025-3-29 21:09:21 | 只看該作者
49#
發(fā)表于 2025-3-30 03:13:50 | 只看該作者
Decoupled Conditional Contrastive Learning with?Variable Metadata for?Prostate Lesion Detectiondetection. The Prostate Imaging Reporting and Data System (PI-RADS) has standardized interpretation of prostate MRI by defining a score for lesion malignancy. PI-RADS data is readily available from radiology reports but is subject to high inter-reports variability. We propose a new contrastive loss
50#
發(fā)表于 2025-3-30 04:33:36 | 只看該作者
FBA-Net: Foreground and?Background Aware Contrastive Learning for?Semi-Supervised Atrium Segmentatiol annotation is time-consuming and requires specialized expertise. Semi-supervised segmentation methods that leverage both labeled and unlabeled data have shown promise, with contrastive learning emerging as a particularly effective approach. In this paper, we propose a contrastive learning strategy
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜山县| 松江区| 右玉县| 揭东县| 泸定县| 谢通门县| 浪卡子县| 清苑县| 泸西县| 凤翔县| 明溪县| 玛曲县| 丘北县| 怀安县| 兴文县| 昌黎县| 涟源市| 房山区| 新乡县| 镇雄县| 峨边| 北安市| 新宾| 化德县| 崇阳县| 千阳县| 甘泉县| 定州市| 嘉义市| 正蓝旗| 江华| 怀来县| 和硕县| 闻喜县| 东至县| 无棣县| 惠水县| 工布江达县| 普陀区| 阜康市| 湘阴县|